Milling force prediction model development for CFRP multidirectional laminates and segmented specific cutting energy analysis

2021 ◽  
Vol 113 (9-10) ◽  
pp. 2437-2445
Author(s):  
Haifeng Ning ◽  
Hualin Zheng ◽  
Shigui Zhang ◽  
Xinman Yuan
2021 ◽  
Vol 143 (9) ◽  
Author(s):  
Minglong Guo ◽  
Zhaocheng Wei ◽  
Minjie Wang ◽  
Jia Wang ◽  
Shengxian Liu

Abstract The core parts with the characteristic of freeform surface are widely used in the major equipment of various fields. Cutting force is the most important physical quantity in the five-axis CNC machining process of core parts. Not only in micro-milling, but also in macro-milling, there is also an obvious size effect, especially in medium- and high-speed milling, which is frequently ignored. In this paper, the milling force prediction model for five-axis machining of a freeform surface with a ball-end mill considering the mesoscopic size effect is established. Based on the characteristics of cutting thickness in macro-milling, a new dislocation density correction form is proposed, and a new experiment is designed to identify the dislocation density correction coefficient. Therefore, the shear stress calculated in this paper not only reflects the cutting dynamic mechanical characteristics but also considers the mesoscopic size effect. A linear function is proposed to describe the relationship between friction coefficient and cutting speed, cutter rake angle, and cutting thickness. Considering cutter run-out, the micro-element cutting force in the shear zone and plough zone are analyzed. The cutting geometry contact between the freeform surface and the ball-end mill is analyzed analytically by the space limitation method. Finally, the total milling force is obtained by summing all the force vectors of cutting edge micro-elements within the in-cut cutting edge. In the five-axis machining experiment of freeform surface, the theoretically predicted results of milling forces are in good agreement with the measured results in trend and amplitude.


2011 ◽  
Vol 33 (2) ◽  
pp. 518-523 ◽  
Author(s):  
C. Igathinathane ◽  
L.O. Pordesimo ◽  
M.W. Schilling ◽  
E.P. Columbus

Author(s):  
Juncheng Wang ◽  
Bin Zou ◽  
Mingfang Liu ◽  
Yishang Li ◽  
Hongjian Ding ◽  
...  

2021 ◽  
Author(s):  
Minglong Guo ◽  
Zhaocheng Wei ◽  
Shiquan Li ◽  
Minjie Wang ◽  
Hang Gao ◽  
...  

Abstract In the multi-axis machining of freeform surface, compared with ball end mill, the fillet end mill has higher machining efficiency under the same residual height and has been widely used. As the most important physical quantity in machining process, milling force has always been the focus of research. In this paper, the geometry contact between fillet end mill and freeform surface is analyzed by analytical method, and then the milling force prediction model of multi-axis machining is established. Based on differential discretization, the cutter location of multi-axis machining of freeform surface is approximate to multi-axis machining of oblique plane, which simplifies the research object. The inclination angle is defined to describe the relationship among cutter axis, feed and workpiece in cutter coordinate system. The space range of the cutting edge element participating in material cutting is constructed by the swept surface of previous tool path, the to-be machined surface and the feed direction surface, and the in cut cutting edge is determined by judging the cutting edge element one by one. Considering cutter run-out, the element cutting forces on the cylindrical and fillet surfaces of the fillet end mill are derived, and all the element forces within in cut cutting edge are summed by vector to obtain the overall milling force of fillet end mill. Simulation results show that, compared with the solid method, this contact analysis method between cutter and workpiece can take both efficiency and accuracy into account. In the machining experiment, the measured force and predicted force along tool path are consistent in trend and amplitude, which verifies the effectiveness of the milling force prediction model.


2021 ◽  
Vol 13 (6) ◽  
pp. 168781402110277
Author(s):  
Haifeng Ning ◽  
Hualin Zheng ◽  
Xinman Yuan

Carbon fiber reinforced polymer (CFRP) is widely used in the aerospace field due to its light weight and high strength. The CFRP milling process is prone to damage such as burrs and tears. The cutting force is closely related to the damage of CFRP and tool wear. In this paper, a back propagation (BP) neural network model of cutting force and edge force coefficients was established. The model considers the effects of instantaneous uncut chip thickness, fiber cutting angle, spindle speed, and axial depth of cut. The unidirectional CFRP laminate instantaneous milling model considering the cutting edge force was further established. The instantaneous milling force prediction model was extended to multi-directional CFRP laminates. And the relationship between the damage mechanism of CFRP and the instantaneous milling force was analyzed. Experiments have proved that the instantaneous milling force prediction model built in this paper has high accuracy.


2020 ◽  
Author(s):  
Sudeep Kumar Singh ◽  
Adarsha Arijit Sahoo ◽  
Biswojit Pattnayak ◽  
Biswo Bhushan Tarai ◽  
A.M. Mohanty

Sign in / Sign up

Export Citation Format

Share Document