scholarly journals A new approach to find gouge free tool positions for a toroidal cutter for Bézier surfaces in five-axis machining

Author(s):  
Mukhmeet Singh ◽  
Jerry Qu ◽  
Ravinder Kumar Duvedi ◽  
Sanjeev Bedi ◽  
Stephen Mann
2021 ◽  
Author(s):  
Mukhmeet Sing ◽  
Jerry Qu ◽  
Ravinder Kumar Duvedi ◽  
Sanjeev Bedi ◽  
Stephen Mann

Abstract We implement and test a multi-point machining tool positioning technique that positions the tool using only a variation on gouge checking. The result is a method that is roughly twice as fast as an earlier method that performed a numerical search to find a tool position with multiple points of contact with the design surface. A GPU implementation provides an additional factor of ten speedup. Verification of the method was done via simulation and machining and measuring physical parts.


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 283
Author(s):  
Muhammad Ammad ◽  
Md Yushalify Misro ◽  
Muhammad Abbas ◽  
Abdul Majeed

This paper introduces a new approach for the fabrication of generalized developable cubic trigonometric Bézier (GDCT-Bézier) surfaces with shape parameters to address the fundamental issue of local surface shape adjustment. The GDCT-Bézier surfaces are made by means of GDCT-Bézier-basis-function-based control planes and alter their shape by modifying the shape parameter value. The GDCT-Bézier surfaces are designed by maintaining the classic Bézier surface characteristics when the shape parameters take on different values. In addition, the terms are defined for creating a geodesic interpolating surface for the GDCT-Bézier surface. The conditions appropriate and suitable for G1, Farin–Boehm G2, and G2 Beta continuity in two adjacent GDCT-Bézier surfaces are also created. Finally, a few important aspects of the newly formed surfaces and the influence of the shape parameters are discussed. The modeling example shows that the proposed approach succeeds and can also significantly improve the capability of solving problems in design engineering.


Author(s):  
R. M. C. Bodduluri ◽  
B. Ravani

Abstract In this paper we study Computer Aided Geometric Design (CAGD) and Manufacturing (CAM) of developable surfaces. We develop direct representations of developable surfaces in terms of point as well as plane geometries. The point representation uses a Bezier curve, the tangents of which span the surface. The plane representation uses control planes instead of control points and determines a surface which is a Bezier interpolation of the control planes. In this case, a de Casteljau type construction method is presented for geometric design of developable Bezier surfaces. In design of piecewise surface patches, a computational geometric algorithm similar to Farin-Boehm construction used in design of piecewise parametric curves is developed for designing developable surfaces with C2 continuity. In the area of manufacturing or fabrication of developable surfaces, we present simple methods for both development of a surface into a plane and bending of a flat plane into a desired developable surface. The approach presented uses plane and line geometries and eliminates the need for solving differential equations of Riccatti type used in previous methods. The results are illustrated using an example generated by a CAD/CAM system implemented based on the theory presented.


Sign in / Sign up

Export Citation Format

Share Document