Design optimization and eigenfrequency tuning of ultrasonic oscillator of one-dimensional longitudinal vibration at high temperature for laser welding

Author(s):  
Zuguo Liu ◽  
Xiangzhong Jin ◽  
Junyi Zhang ◽  
Zhongjia Hao ◽  
Junhao Li
2021 ◽  
Vol 202 ◽  
pp. 109533
Author(s):  
J.P. Oliveira ◽  
Jiajia Shen ◽  
J.D. Escobar ◽  
C.A.F. Salvador ◽  
N. Schell ◽  
...  

2018 ◽  
Vol 49 (7) ◽  
pp. 739-753 ◽  
Author(s):  
A. J. Barakat ◽  
L. Pel ◽  
O. C. G. Adan

1996 ◽  
Vol 465 ◽  
Author(s):  
J. P. Freidberg ◽  
A. J. Shajii ◽  
K. W. Wenzel ◽  
J. R. Lierzer

ABSTRACTThis paper describes a new concept for a high-temperature, electrodeless melter for vitrifying radioactive wastes. Based on the principles of induction heating, it circumvents a number of difficulties associated with existing technology. The melter can operate at higher temperatures (1500–2000°C vs 1150°C), allowing for a higher quality, more durable glass which reduces the long-term leaching rate. Higher processing temperatures also enable conversion from borosilicate to high-silica glass which can accommodate 2 to 3 times as much radioactive waste, potentially halving the ultimate required long-term disposal space. Finally, with high temperatures, conversion of nuclear waste into ceramics can also be considered. This too leads to higher waste loading and the reduction of repository space. The melter is toroidal, linked by an iron core transformer that allows efficient electrical operation even at 60 Hz. One-dimensional electrical and thermal analyses are presented.


Author(s):  
M. G. McKellar ◽  
J. E. O’Brien ◽  
C. M. Stoots ◽  
G. L. Hawkes

A process model has been developed to evaluate the potential performance of a large-scale high-temperature co-electrolysis plant for the production of syngas from steam and carbon dioxide. The co-electrolysis process allows for direct electrochemical reduction of the steam-carbon dioxide gas mixture, yielding hydrogen and carbon monoxide, or syngas. The process model has been developed using the Honeywell UniSim systems analysis code. Using this code, a detailed process flow sheet has been defined that includes all the components that would be present in an actual plant such as pumps, compressors, heat exchangers, turbines, and the electrolyzer. Since the electrolyzer is not a standard UniSim component, a custom one-dimensional co-electrolysis model was developed for incorporation into the overall UniSim process flow sheet. The one dimensional co-electrolysis model assumes local chemical equilibrium among the four process-gas species via the gas shift reaction. The electrolyzer model allows for the determination of co-electrolysis outlet temperature, composition (anode and cathode sides); mean Nernst potential, operating voltage and electrolyzer power based on specified inlet gas flow rates, heat loss or gain, current density, and cell area-specific resistance. The one-dimensional electrolyzer model was validated by comparison with results obtained from a fully three dimensional computational fluid dynamics model developed using FLUENT, and by comparison to experimental data. This paper provides representative results obtained from the UniSim flow sheet model for a 300 MW co-electrolysis plant, coupled to a high-temperature gas-cooled nuclear reactor. The co-electrolysis process, coupled to a nuclear reactor, provides a means of recycling carbon dioxide back into a useful liquid fuel. If the carbon dioxide source is based on biomass, the entire process would be climate neutral.


Sign in / Sign up

Export Citation Format

Share Document