pyrolytic carbon
Recently Published Documents


TOTAL DOCUMENTS

972
(FIVE YEARS 142)

H-INDEX

49
(FIVE YEARS 7)

Recycling ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 2
Author(s):  
Aleksandr Ketov ◽  
Vladimir Korotaev ◽  
Natalia Sliusar ◽  
Vladivir Bosnic ◽  
Marina Krasnovskikh ◽  
...  

The recycling of end-of-life plastics is a problem, since small parts can be returned into circulation. The rest is burned, landfilled or recycled into low-quality heating oil by pyrolysis methods. The disadvantages of this method are the need to dispose the formed by-product, pyrolytic carbon, the poor quality of produced liquid fuel and the low productivity of the method associated with the periodicity of the process. In this work, methods of thermogravimetry and chromatography–mass spectrometry (GC-MS) have been used to study the co-pyrolysis products of low-density polyethylene (LDPE) and oxygen-containing substances at the pressures of 4–8 MPa and temperatures of 520–620 °C. Experiments have highlighted the conditions needed for producing of high-quality liquid fuel. Initial data have been prepared for the design of a continuous pyrolysis reactor to dispose polymer waste for the production of bio-oil which would be available to enter the petrochemical products market.


2022 ◽  
Vol 6 (1) ◽  
pp. 24
Author(s):  
Vinothini Venkatachalam ◽  
Sergej Blem ◽  
Ali Gülhan ◽  
Jon Binner

Ultra high-temperature ceramic matrix composites (UHTCMCs) based on carbon fibre (Cf) have been shown to offer excellent temperature stability exceeding 2000 °C in highly corrosive environments, which are prime requirements for various aerospace applications. In C3Harme, a recent European Union-funded Horizon 2020 project, an experimental campaign has been carried out to assess and screen a range of UHTCMC materials for near-zero ablation rocket nozzle and thermal protection systems. Samples with ZrB2-impregnated pyrolytic carbon matrices and 2.5D woven continuous carbon fibre preforms, produced by slurry impregnation and radio frequency aided chemical vapour infiltration (RF-CVI), were tested using the vertical free jet facility at DLR, Cologne using solid propellants. When compared to standard CVI, RFCVI accelerates pyrolytic carbon densification, resulting in a much shorter manufacturing time. The samples survived the initial thermal shock and subsequent surface temperatures of >2000 °C with a minimal ablation rate. Post-test characterisation revealed a correlation between surface temperature and an accelerated catalytic activity, which lead to an understanding of the crucial role of preserving the bulk of the sample.


Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 326
Author(s):  
George V. Theodorakopoulos ◽  
Fotios K. Katsaros ◽  
Sergios K. Papageorgiou ◽  
Margarita Beazi-Katsioti ◽  
George Em. Romanos

In this study, efficient commercial photocatalyst (Degussa P25) nanoparticles were effectively dispersed and stabilized in alginate, a metal binding biopolymer. Taking advantage of alginate’s superior metal chelating properties, copper nanoparticle-decorated photocatalysts were developed after a pyrolytic or calcination-sintering procedure, yielding ceramic beads with enhanced photocatalytic and mechanical properties, excellent resistance to attrition, and optimized handling compared to powdered photocatalysts. The morphological and structural characteristics were studied using LN2 porosimetry, SEM, and XRD. The abatement of an organic pollutant (Methyl Orange, MO) was explored in the dark and under UV irradiation via batch experiments. The final properties of the photocatalytic beads were defined by both the synthesis procedure and the heat treatment conditions, allowing for their further optimization. It was found that the pyrolytic carbon residuals enabled the adhesion of the TiO2 nanoparticles, acting as binder, and increased the MO adsorption capacity, leading to increased local concentration in the photocatalyst vicinity. Well dispersed Cu nanoparticles were also found to enhance photocatalytic activity. The prepared photocatalysts exhibited increased MO adsorption capacity (up to 3.0 mg/g) and also high photocatalytic efficiency of about 50% MO removal from water solutions, reaching an overall MO rejection of about 80%, at short contact times (3 h). Finally, the prepared photocatalysts kept their efficiency for at least four successive photocatalytic cycles.


2021 ◽  
Vol 44 ◽  
pp. 103372
Author(s):  
Guosai Jiang ◽  
Jun Guo ◽  
Yanzhi Sun ◽  
Xiaoguang Liu ◽  
Junqing Pan

Nukleonika ◽  
2021 ◽  
Vol 66 (4) ◽  
pp. 121-126
Author(s):  
Ewelina Chajduk ◽  
Paweł Kalbarczyk

Abstract The application of inductively coupled plasma mass spectrometry (ICP-MS), both in solution and laser ablation (LA) mode, and instrumental neutron activation analysis (INAA) in the nuclear material analysis are presented in this paper. The possibility of each technique for the chemical characterization of substances used during TRISO fuel production and its advantages and limitations are discussed based on the obtained results of the analysis of real materials used in TRISO fuel production in the Institute of Nuclear Chemistry and Technology. The paper also reports the application of INAA and LA-ICP-MS to the verification of the purity of the protective layers of pyrolytic carbon (PyC) and silicon carbide.


2021 ◽  
Author(s):  
Marian Baah ◽  
Afifa Rahman ◽  
Sarah Sibilia ◽  
Gianmarco Trezza ◽  
Luigi Ferrigno ◽  
...  

Abstract In this paper, we propose an original approach for the real-time detection of industrial organic pollutants in water. It is based on the monitoring of the time evolution of the electrical impedance of low-cost graphitic nanomembranes. The developed approach exploits the high sensitivity of the impedance of 2D graphene-related materials to the adsorbents. We examined sensitivity of the nanomembranes based on Pyrolyzed Photoresist (PPF), Pyrolytic Carbon (PyC), and Multilayer Graphene (MLG) films. In order to realize a prototype of a sensor capable of monitoring the pollutants in water, the membranes were integrated into an ad-hoc printed circuit board. We demonstrated the correlation between the sensitivity of the electric impedance to adsorbents and the structure of the nanomembranes, and revealed that the amorphous PyC, being most homogeneous and adhesive to the SiO2 substrate, is the most promising in terms of integration into industrial pollutants sensors.


Sign in / Sign up

Export Citation Format

Share Document