Numerical experiments on column-wise recurrence formula to compute fully normalized associated Legendre functions of ultra-high degree and order

2019 ◽  
Vol 94 (1) ◽  
Author(s):  
Zhibin Xing ◽  
Shanshan Li ◽  
Miao Tian ◽  
Diao Fan ◽  
Chi Zhang
2018 ◽  
Vol 8 (1) ◽  
pp. 162-173
Author(s):  
T. Fukushima

Abstract In order to accelerate the spherical/spheroidal harmonic synthesis of any function, we developed a new recursive method to compute the sine/cosine series coefficient of the 4π fully- and Schmidt quasi-normalized associated Legendre functions. The key of the method is a set of increasing-degree/order mixed-wavenumber two to four-term recurrence formulas to compute the diagonal terms. They are used in preparing the seed values of the decreasing-order fixed-degree, and fixed-wavenumber two- and three-term recurrence formulas, which are obtained by modifying the classic relations. The new method is accurate and capable to deal with an arbitrary high degree/ order/wavenumber. Also, it runs significantly faster than the previous method of ours utilizing the Wigner d function, say around 20 times more when the maximum degree exceeds 1,000.


Author(s):  
D.E. Winch ◽  
P.H. Roberts

AbstractDifferentiation of the well-known addition theorem for Legendre polynomials produces results for sums over order m of products of various derivatives of associated Legendre functions. The same method is applied to the corresponding addition theorems for vector and tensor spherical harmonics. Results are also given for Chebyshev polynomials of the second kind, corresponding to ‘spin-weighted’ associated Legendre functions, as used in studies of distributions of rotations.


2009 ◽  
Vol 44 (4) ◽  
pp. 131-148 ◽  
Author(s):  
M. Eshagh

Spatially Restricted Integrals in Gradiometric Boundary Value ProblemsThe spherical Slepian functions can be used to localize the solutions of the gradiometric boundary value problems on a sphere. These functions involve spatially restricted integral products of scalar, vector and tensor spherical harmonics. This paper formulates these integrals in terms of combinations of the Gaunt coefficients and integrals of associated Legendre functions. The presented formulas for these integrals are useful in recovering the Earth's gravity field locally from the satellite gravity gradiometry data.


1922 ◽  
Vol 41 ◽  
pp. 82-93
Author(s):  
T. M. MacRobert

Associated Legendre Functions as Integrals involving Bessel Functions. Let,where C denotes a contour which begins at −∞ on the real axis, passes positively round the origin, and returns to −∞, amp λ=−π initially, and R(z)>0, z being finite and ≠1. [If R(z)>0 and z is finite, then R(z±)>0.] Then if I−m (λ) be expanded in ascending powers of λ, and if the resulting expression be integrated term by term, it is found that


Sign in / Sign up

Export Citation Format

Share Document