Optimized tuning of power oscillation damping controllers using probabilistic approach to enhance small-signal stability considering stochastic time delay

2019 ◽  
Vol 101 (3) ◽  
pp. 969-982 ◽  
Author(s):  
Samundra Gurung ◽  
Francisco Jurado ◽  
Sumate Naetiladdanon ◽  
Anawach Sangswang
Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7372
Author(s):  
Nikolay Nikolaev ◽  
Kiril Dimitrov ◽  
Yulian Rangelov

This paper focuses on the methods that ensure the rotor angle stability of electric power systems, which is most frequently analyzed with small-signal models. Over the past several decades, power system stabilizers (PSSs) for conventional excitation systems were the main tools for improving the small-signal stability of electromechanical oscillatory modes. In the last decade, power oscillation damping (POD) control implemented in photovoltaic (PV) inverters has been considered an alternative to PSSs. As PV generation undergoes massive rollout due to policy directions and renewable energy source integration activities, it could potentially be used as a source of damping, which is crucial for sustaining the rotor angle stability of the remaining in-service synchronous generators. Several studies have already been dedicated to the development of different damping strategies. This paper contributes to the existing research in power system stability by providing a comprehensive review of the effects of PV generation on small-signal stability, as well as the recent evolution of POD control through PV inverters. The features and impacts of the various ways to realize POD controllers are assessed and summarized in this paper. Currently, detailed information and discussions on the practical application of PV inverter PODs are not available. This paper is, thus, intended to initiate a relevant discussion and propose possible implementation approaches concerning the topic under study.


Author(s):  
Feba Alias ◽  
Manohar Singh

Abstract The goal towards attaining a sustainable future has led to the rapid increase in the integration of converter control based generators (CCBGs). The low inertia response characteristics of CCBGs and the weak tie lines in interconnected systems pose a huge threat to Small-Signal Stability (SSS). Adequate damping of low-frequency oscillations (LFO) is pivotal in ensuring the maximum power transfer through the critical transmission corridors. These operational issues become more serious with the significant reduction in system inertia as a result of the high penetration of CCBGs. Therefore, appropriate control techniques are an absolute requirement for preventing LFOs from limiting the penetration of CCBGs in interconnected networks. This may also eventually lead to revisions in grid codes mandating CCBGs to provide auxiliary damping control. But, the progressive addition of multiple damping controllers for specific target modes can lead to the drifting of eigenvalues (EVs) associated with other electromechanical modes (EMs) in the system. This is due to the adverse interactions between multiple damping controllers in the uncoordinated control approach and may result in deteriorating SSS. Therefore, this paper proposes a simultaneous coordinated control among Battery Energy Storage System (BESS), Wind Turbine Generators (WTG) and Power System Stabilizer (PSS) for enhancing SSS in networks with high wind penetration by considering both inter-area (IA) and local modes. The performance of the proposed coordinated control is corroborated using IEEE 68 bus system for multiple operating scenarios for which the critical modes in the system have the lowest damping index (DI). The effectiveness of modulating the active power, reactive power and simultaneous modulation of both active and reactive power injected by BESS along with a dual-channel Optimized WTG Damping Controller (DOWDC) and PSS is evaluated. The impact of the different coordinated control strategies on voltage dynamics is also investigated. The simulation results validate the better performance of the proposed coordinated control over uncoordinated control approaches.


Sign in / Sign up

Export Citation Format

Share Document