scholarly journals On Fourier time-splitting methods for nonlinear Schrödinger equations in the semi-classical limit II. Analytic regularity

2016 ◽  
Vol 136 (1) ◽  
pp. 315-342 ◽  
Author(s):  
Rémi Carles ◽  
Clément Gallo
2017 ◽  
Vol 27 (09) ◽  
pp. 1727-1742 ◽  
Author(s):  
Rémi Carles ◽  
Clément Gallo

We consider the semi-classical limit of nonlinear Schrödinger equations in the presence of both a polynomial nonlinearity and the derivative in space of a polynomial nonlinearity. By working in a class of analytic initial data, we do not have to assume any hyperbolic structure on the (limiting) phase/amplitude system. The solution, its approximation, and the error estimates are considered in time-dependent analytic regularity.


2019 ◽  
Vol 22 (06) ◽  
pp. 1950045 ◽  
Author(s):  
Rémi Carles ◽  
Clément Gallo

We justify the WKB analysis for generalized nonlinear Schrödinger equations (NLS), including the hyperbolic NLS and the Davey–Stewartson II system. Since the leading order system in this analysis is not hyperbolic, we work with analytic regularity, with a radius of analyticity decaying with time, in order to obtain better energy estimates. This provides qualitative information regarding equations for which global well-posedness in Sobolev spaces is widely open.


2020 ◽  
Vol 14 ◽  
pp. 174830262097353
Author(s):  
Qingqu Zhuang ◽  
Yi Yang

The paper focuses on efficient time-splitting Hermite-Galerkin spectral approximation of the coupled nonlinear Schrödinger equations on the whole line. The original problem is decomposed into one nonlinear subproblem and one linear subproblem by time-splitting method. At each time step, the nonlinear subproblem is solved exactly. While the linear subproblem is efficiently solved by choosing suitable Hermite basis functions with matrix decomposition technique. Numerical experiments are carried out to demonstrate the effectiveness and efficiency of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document