Journal of Algorithms & Computational Technology
Latest Publications


TOTAL DOCUMENTS

204
(FIVE YEARS 108)

H-INDEX

7
(FIVE YEARS 3)

Published By SAGE Publications

1748-3026, 1748-3026

2022 ◽  
Vol 16 ◽  
pp. 174830262110653
Author(s):  
Xuelian Cui ◽  
Zhanjie Zhang ◽  
Tao Zhang ◽  
Zhuoqun Yang ◽  
Jie Yang

In recent years, the research of deep learning has received extensive attention, and many breakthroughs have been made in various fields. On this basis, a neural network with the attention mechanism has become a research hotspot. In this paper, we try to solve the image classification task by implementing channel and spatial attention mechanism which improve the expression ability of neural network model. Different from previous studies, we propose an attention module consisting of channel attention module (CAM) and spatial attention module (SAM). The proposed module derives attention graphs from channel dimension and spatial dimension respectively, then the input features are selectively learned according to the importance of the features. Besides, this module is lightweight and can be easily integrated into image classification algorithms. In the experiment, we combine the deep residual network model with the attention module and the experimental results show that the proposed method brings higher image classification accuracy. The channel attention module adds weight to the signals on different convolution channels to represent the correlation. For different channels, the higher the weight, the higher the correlation which required more attention. The main function of spatial attention is to capture the most informative part in the local feature graph, which is a supplement to channel attention. We evaluate our proposed module based on the ImageNet-1K and Cifar-100 respectively. Through a large number of comparative experiments, our proposed model achieved outstanding performance.


2021 ◽  
Vol 15 ◽  
pp. 174830262110449
Author(s):  
Kai-Jun Hu ◽  
He-Feng Yin ◽  
Jun Sun

During the past decade, representation based classification method has received considerable attention in the community of pattern recognition. The recently proposed non-negative representation based classifier achieved superb recognition results in diverse pattern classification tasks. Unfortunately, discriminative information of training data is not fully exploited in non-negative representation based classifier, which undermines its classification performance in practical applications. To address this problem, we introduce a decorrelation regularizer into the formulation of non-negative representation based classifier and propose a discriminative non-negative representation based classifier for pattern classification. The decorrelation regularizer is able to reduce the correlation of representation results of different classes, thus promoting the competition among them. Experimental results on benchmark datasets validate the efficacy of the proposed discriminative non-negative representation based classifier, and it can outperform some state-of-the-art deep learning based methods. The source code of our proposed discriminative non-negative representation based classifier is accessible at https://github.com/yinhefeng/DNRC .


2021 ◽  
Vol 15 ◽  
pp. 174830262110653
Author(s):  
Chunguang Quan ◽  
Qiuhua He ◽  
Xin Ye ◽  
Xiaojuan Cheng

Greenhouse gas emissions have brought serious negative impacts on human beings and organisms, so energy saving and emission reduction have been recognized by more and more people. Traditional Milk-run model seldom considers the factors of energy saving and emission reduction, and its routing optimization cannot meet the current needs of low-carbon economic development. On the basis of traditional Vehicle Routing Problem research, considering the fixed cost, time penalty cost, energy consumption cost and carbon emission cost of vehicles, the Milk-run model of distribution routing considering carbon emissions under time window constraints is studied. Then the improved ant colony algorithm is used to solve the constructed model. Finally, the order and related data of a company are used to verify the validity and practicality of the model and algorithm. Compared to the scanning method, the results show that not only the total journey distance has been shortened but also the total cost and cost of carbon emissions have been reduced. The optimization of distribution routing considering carbon emissions can reduce the distribution cost of logistics enterprises, respond to the call of low-carbon development in China and help to achieve a win-win situation of social and economic benefits.


2021 ◽  
Vol 15 ◽  
pp. 174830262110543
Author(s):  
Patrick Dondl ◽  
Stephan Wojtowytsch

We describe the implementation of a topological constraint in finite-element simulations of phase-field models, which ensures path-connectedness of preimages of intervals in the phase-field variable. The constraint takes the form of an energetic penalty for a suitable geodesic distance between all pairs of points in the domain. The main application of our method presented here is a discrete steepest descent of a phase-field version of a bending energy with spontaneous curvature and additional surface area penalty. This leads to disconnected surfaces without our topological constraint but connected surfaces with the constraint. Numerically, our constraint is treated by first transforming the double integral over all pairs of points in the domain to a weighted graph structure and then using Dijkstra’s algorithm to calculate the distance between discrete connected components.


2021 ◽  
Vol 15 ◽  
pp. 174830262110113
Author(s):  
Qianying Hong ◽  
Ming-jun Lai ◽  
Jingyue Wang

We present a convergence analysis for a finite difference scheme for the time dependent partial different equation called gradient flow associated with the Rudin-Osher-Fetami model. We devise an iterative algorithm to compute the solution of the finite difference scheme and prove the convergence of the iterative algorithm. Finally computational experiments are shown to demonstrate the convergence of the finite difference scheme.


2021 ◽  
Vol 15 ◽  
pp. 174830262199401
Author(s):  
Hammed Bisira ◽  
Abdellah Salhi

There are many ways to measure the efficiency of the storage area management in container terminals. These include minimising the need for container reshuffle especially at the yard level. In this paper, we consider the container reshuffle problem for stacking and retrieving containers. The problem was represented as a binary integer programming model and solved exactly. However, the exact method was not able to return results for large instances. We therefore considered a heuristic approach. A number of heuristics were implemented and compared on static and dynamic reshuffle problems including four new heuristics introduced here. Since heuristics are known to be instance dependent, we proposed a compatibility test to evaluate how well they work when combined to solve a reshuffle problem. Computational results of our methods on realistic instances are reported to be competitive and satisfactory.


2021 ◽  
Vol 15 ◽  
pp. 174830262110084
Author(s):  
Bishnu P Lamichhane ◽  
Elizabeth Harris ◽  
Quoc Thong Le Gia

We compare a recently proposed multivariate spline based on mixed partial derivatives with two other standard splines for the scattered data smoothing problem. The splines are defined as the minimiser of a penalised least squares functional. The penalties are based on partial differential operators, and are integrated using the finite element method. We compare three methods to two problems: to remove the mixture of Gaussian and impulsive noise from an image, and to recover a continuous function from a set of noisy observations.


2021 ◽  
Vol 15 ◽  
pp. 174830262110080
Author(s):  
Changjun Zha* ◽  
Qian Zhang* ◽  
Huimin Duan

Traditional single-pixel imaging systems are aimed mainly at relatively static or slowly changing targets. When there is relative motion between the imaging system and the target, sizable deviations between the measurement values and the real values can occur and result in poor image quality of the reconstructed target. To solve this problem, a novel dynamic compressive imaging system is proposed. In this system, a single-column digital micro-mirror device is used to modulate the target image, and the compressive measurement values are obtained for each column of the image. Based on analysis of the measurement values, a new recovery model of dynamic compressive imaging is given. Differing from traditional reconstruction results, the measurement values of any column of vectors in the target image can be used to reconstruct the vectors of two adjacent columns at the same time. Contingent upon characteristics of the results, a method of image quality enhancement based on an overlapping average algorithm is proposed. Simulation experiments and analysis show that the proposed dynamic compressive imaging can effectively reconstruct the target image; and that when the moving speed of the system changes within a certain range, the system reconstructs a better original image. The system overcomes the impact of dynamically changing speeds, and affords significantly better performance than traditional compressive imaging.


2021 ◽  
Vol 15 ◽  
pp. 174830262199962
Author(s):  
Patrick O Kano ◽  
Moysey Brio ◽  
Jacob Bailey

The Weeks method for the numerical inversion of the Laplace transform utilizes a Möbius transformation which is parameterized by two real quantities, σ and b. Proper selection of these parameters depends highly on the Laplace space function F( s) and is generally a nontrivial task. In this paper, a convolutional neural network is trained to determine optimal values for these parameters for the specific case of the matrix exponential. The matrix exponential eA is estimated by numerically inverting the corresponding resolvent matrix [Formula: see text] via the Weeks method at [Formula: see text] pairs provided by the network. For illustration, classes of square real matrices of size three to six are studied. For these small matrices, the Cayley-Hamilton theorem and rational approximations can be utilized to obtain values to compare with the results from the network derived estimates. The network learned by minimizing the error of the matrix exponentials from the Weeks method over a large data set spanning [Formula: see text] pairs. Network training using the Jacobi identity as a metric was found to yield a self-contained approach that does not require a truth matrix exponential for comparison.


2021 ◽  
Vol 15 ◽  
pp. 174830262199958
Author(s):  
Colin L Defreitas ◽  
Steve J Kane

This paper proposes a numerical approach to the solution of the Fisher-KPP reaction-diffusion equation in which the space variable is developed using a purely finite difference scheme and the time development is obtained using a hybrid Laplace Transform Finite Difference Method (LTFDM). The travelling wave solutions usually associated with the Fisher-KPP equation are, in general, not deemed suitable for treatment using Fourier or Laplace transform numerical methods. However, we were able to obtain accurate results when some degree of time discretisation is inbuilt into the process. While this means that the advantage of using the Laplace transform to obtain solutions for any time t is not fully exploited, the method does allow for considerably larger time steps than is otherwise possible for finite-difference methods.


Sign in / Sign up

Export Citation Format

Share Document