scholarly journals Calculation of dispersion interactions with the geminal-based ring Coupled Cluster Doubles method

2020 ◽  
Vol 139 (9) ◽  
Author(s):  
Á. Margócsy ◽  
Á. Szabados

Abstract The performance of the recently developed multi-reference extension of ring coupled cluster doubles is investigated for dispersion energy calculations, applied to the generalized valence bond wave function. The leading-order contribution to the dispersion energy is shown to have the correct asymptotic behaviour. Illustrative calculations on noble gas dimers are presented.

2002 ◽  
Vol 117 (20) ◽  
pp. 9190-9201 ◽  
Author(s):  
Troy Van Voorhis ◽  
Martin Head-Gordon

2001 ◽  
Vol 115 (17) ◽  
pp. 7814-7821 ◽  
Author(s):  
Troy Van Voorhis ◽  
Martin Head-Gordon

Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1305
Author(s):  
Stefano Borocci ◽  
Felice Grandinetti ◽  
Nico Sanna

The structure, stability, and bonding character of fifteen (Ng-H-Ng)+ and (Ng-H-Ng')+ (Ng, Ng' = He-Xe) compounds were explored by theoretical calculations performed at the coupled cluster level of theory. The nature of the stabilizing interactions was, in particular, assayed using a method recently proposed by the authors to classify the chemical bonds involving the noble-gas atoms. The bond distances and dissociation energies of the investigated ions fall in rather large intervals, and follow regular periodic trends, clearly referable to the difference between the proton affinity (PA) of the various Ng and Ng'. These variations are nicely correlated with the bonding situation of the (Ng-H-Ng)+ and (Ng-H-Ng')+. The Ng-H and Ng'-H contacts range, in fact, between strong covalent bonds to weak, non-covalent interactions, and their regular variability clearly illustrates the peculiar capability of the noble gases to undergo interactions covering the entire spectrum of the chemical bond.


Sign in / Sign up

Export Citation Format

Share Document