Asymptotic Analysis for a Vlasov-Fokker-Planck/ Compressible Navier-Stokes System of Equations

2008 ◽  
Vol 281 (3) ◽  
pp. 573-596 ◽  
Author(s):  
A. Mellet ◽  
A. Vasseur
Author(s):  
Young-Pil Choi ◽  
Jinwook Jung

We study an asymptotic analysis of a coupled system of kinetic and fluid equations. More precisely, we deal with the nonlinear Vlasov–Fokker–Planck equation coupled with the compressible isentropic Navier–Stokes system through a drag force in a bounded domain with the specular reflection boundary condition for the kinetic equation and homogeneous Dirichlet boundary condition for the fluid system. We establish a rigorous hydrodynamic limit corresponding to strong noise and local alignment force. The limiting system is a type of two-phase fluid model consisting of the isothermal Euler system and the compressible Navier–Stokes system. Our main strategy relies on the relative entropy argument based on the weak–strong uniqueness principle. For this, we provide a global-in-time existence of weak solutions for the coupled kinetic-fluid system. We also show the existence and uniqueness of strong solutions to the limiting system in a bounded domain with the kinematic boundary condition for the Euler system and Dirichlet boundary condition for the Navier–Stokes system.


Sign in / Sign up

Export Citation Format

Share Document