Whether radial receptive field organization of the fourth extrastriate crescent (area V4A) gives special advantage for analysis of the optic flow. Comparison with the first crescent (area V2)

2007 ◽  
Vol 182 (2) ◽  
pp. 215-222 ◽  
Author(s):  
E. V. Levichkina ◽  
A. A. Loshkarev ◽  
E. I. Rodionova ◽  
E. P. Popova ◽  
I. N. Pigarev
2003 ◽  
Vol 90 (3) ◽  
pp. 1626-1634 ◽  
Author(s):  
Katja Karmeier ◽  
Holger G. Krapp ◽  
Martin Egelhaaf

The sophisticated receptive field organization of motion-sensitive tangential cells in the visual system of the blowfly Calliphora vicina matches the structure of particular optic flow fields. Hypotheses on the tuning of particular tangential cells to rotatory self-motion are based on local motion measurements. So far, tangential cells have never been tested with global optic flow stimuli. Therefore we measured the responses of an identifiable neuron, the V1 tangential cell, to wide-field motion stimuli mimicking optic flow fields similar to those the fly encounters during particular self-motions. The stimuli were generated by a “planetarium-projector,” casting a pattern of moving light dots on a large spherical projection screen. We determined the tuning curves of the V1-cell to optic flow fields as induced by the animal during 1) rotation about horizontally aligned body axes, 2) upward/downward translation, and 3) a combination of both components. We found that the V1-cell does not respond as specifically to self-rotations, as had been concluded from its receptive field organization. The neuron responds strongly to upward translation and its tuning to rotations is much coarser than expected. The discrepancies between the responses to global optic flow and the predictions based on the receptive field organization are likely due to nonlinear integration properties of tangential neurons. Response parameters like orientation, shape, and width of the tuning curve are largely unaffected by changes in rotation velocity or a superposition of rotational and translational optic flow.


1997 ◽  
Vol 14 (6) ◽  
pp. 1061-1072 ◽  
Author(s):  
Daniel C. Kiper ◽  
Suzanne B. Fenstemaker ◽  
Karl R. Gegenfurtner

AbstractWe recorded from single cells in area V2 of cynomolgus monkeys using standard acute recording techniques. After measuring each cell's spatial and temporal properties, we performed several tests of its chromatic properties using sine-wave gratings modulated around a mean gray background. Most cells behaved like neurons in area V1 and their responses were adequately described by a model that assumes a linear combination of cone signals. Unlike in V1, we found a subpopulation of cells whose activity was increased or inhibited by stimuli within a narrow range of color combinations. No particular color directions were preferentially represented. V2 cells showing color specificity, including cells showing narrow chromatic tuning, were present in any of the stripe compartments, as defined by cytochrome-oxidase (CO) staining. An addition of chromatic contrast facilitated the responses of most neurons to gratings with various luminance contrasts. Neurons in all three CO compartments gave significant responses to isoluminant gratings. Receptive-field properties of cells were generally similar for luminance and chromatically defined stimuli. We found only a small number of cells with a clearly identifiable double-opponent receptive-field organization.


2001 ◽  
Vol 18 (1) ◽  
pp. 1-8 ◽  
Author(s):  
KATJA KARMEIER ◽  
RICO TABOR ◽  
MARTIN EGELHAAF ◽  
HOLGER G. KRAPP

The distribution of local preferred directions and motion sensitivities within the receptive fields of so-called tangential neurons in the fly visual system was previously found to match optic flow fields as induced by certain self-motions. The complex receptive-field organization of the tangential neurons and the recent evidence showing that the orderly development of the fly's peripheral visual system depends on visual experience led us to investigate whether or not early visual input is required to establish the functional receptive-field properties of such tangential neurons. In electrophysiological investigations of two identified tangential neurons, it turned out that dark-hatched flies which were kept in complete darkness for 2 days develop basically the same receptive-field organization as flies which were raised under seasonal light/dark conditions and were free to move in their cages. We did not find any evidence that the development of the sophisticated receptive-field organization of tangential neurons depends on sensory experience. Instead, the input to the tangential neurons seems to be “hardwired” and the specificity of these cells to optic flow induced during self-motions of the animal may have evolved on a phylogenetical time scale.


1998 ◽  
Vol 79 (4) ◽  
pp. 1902-1917 ◽  
Author(s):  
Holger G. Krapp ◽  
Bärbel Hengstenberg ◽  
Roland Hengstenberg

Krapp, Holger G., Bärbel Hengstenberg, and Roland Hengstenberg. Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly. J. Neurophysiol. 79: 1902–1917, 1998. The third visual neuropil (lobula plate) of the blowfly Calliphora erythrocephala is a center for processing motion information. It contains, among others, 10 individually identifiable “vertical system” (VS) neurons responding to visual wide-field motions of arbitrary patterns. We demonstrate that each VS neuron is tuned to sense a particular aspect of optic flow that is generated during self-motion. Thus the VS neurons in the fly supply visual information for the control of head orientation, body posture, and flight steering. To reveal the functional organization of the receptive fields of the 10 VS neurons, we determined with a new method the distributions of local motion sensitivities and local preferred directions at 52 positions in the fly's visual field. Each neuron was identified by intracellular staining with Lucifer yellow and three-dimensional reconstructions from 10-μm serial sections. Thereby the receptive-field organization of each recorded neuron could be correlated with the location and extent of its dendritic arborization in the retinotopically organized neuropil of the lobula plate. The response fields of the VS neurons, i.e., the distributions of local preferred directions and local motion sensitivities, are not uniform but resemble rotatory optic flow fields that would be induced by the fly during rotations around various horizontal axes. Theoretical considerations and quantitative analyses of the data, which will be presented in a subsequent paper, show that VS neurons are highly specialized neural filters for optic flow processing and thus for the visual sensation of self-motions in the fly.


1999 ◽  
Vol 16 (4) ◽  
pp. 653-665 ◽  
Author(s):  
DAIYAN XIN ◽  
STEWART A. BLOOMFIELD

We studied the light-evoked responses of AII amacrine cells in the rabbit retina under dark- and light-adapted conditions. In contrast to the results of previous studies, we found that AII cells display robust responses to light over a 6–7 log unit intensity range, well beyond the operating range of rod photoreceptors. Under dark adaptation, AII cells showed an ON-center/OFF-surround receptive-field organization. The intensity–response profile of the center-mediated response component followed a dual-limbed sigmoidal function indicating a transition from rod to cone mediation as stimulus intensities were increased. Following light adaptation, the receptive-field organization of AII cells changed dramatically. Light-adapted AII cells showed both ON- and OFF-responses to stimulation of the center receptive field, but we found no evidence for an antagonistic surround. Interestingly, the OFF-center response appeared first following rapid light adaptation and was then replaced gradually over a 1–4 min period by the emerging ON-center response component. Application of the metabotropic glutamate receptor agonist APB, the ionotropic glutamate blocker CNQX, 8-bromo-cGMP, and the nitric oxide donor SNAP all showed differential effects on the various center-mediated responses displayed by dark- and light-adapted AII cells. Taken together, these pharmacological results indicated that different synaptic circuits are responsible for the generation of the different AII cell responses. Specifically, the rod-driven ON-center responses are apparently derived from rod bipolar cell synaptic inputs, whereas the cone-driven ON-center responses arise from signals crossing the gap junctions between AII cells and ON-center cone bipolar cells. Additionally, the OFF-center response of light-adapted AII cells reflects direct synaptic inputs from OFF-center cone bipolar cells to AII dendritic processes in the distal inner plexiform layer.


1994 ◽  
Vol 11 (4) ◽  
pp. 703-720 ◽  
Author(s):  
Ming Sun ◽  
A. B. Bonds

AbstractThe two-dimensional organization of receptive fields (RFs) of 44 cells in the cat visual cortex and four cells from the cat LGN was measured by stimulation with either dots or bars of light. The light bars were presented in different positions and orientations centered on the RFs. The RFs found were arbitrarily divided into four general types: Punctate, resembling DOG filters (11%); those resembling Gabor filters (9%); elongate (36%); and multipeaked-type (44%). Elongate RFs, usually found in simple cells, could show more than one excitatory band or bifurcation of excitatory regions. Although regions inhibitory to a given stimulus transition (e.g. ON) often coincided with regions excitatory to the opposite transition (e.g. OFF), this was by no means the rule. Measurements were highly repeatable and stable over periods of at least 1 h. A comparison between measurements made with dots and with bars showed reasonable matches in about 40% of the cases. In general, bar-based measurements revealed larger RFs with more structure, especially with respect to inhibitory regions. Inactivation of lower cortical layers (V-VI) by local GABA injection was found to reduce sharpness of detail and to increase both receptive-field size and noise in upper layer cells, suggesting vertically organized RF mechanisms. Across the population, some cells bore close resemblance to theoretically proposed filters, while others had a complexity that was clearly not generalizable, to the extent that they seemed more suited to detection of specific structures. We would speculate that the broadly varying forms of cat cortical receptive fields result from developmental processes akin to those that form ocular-dominance columns, but on a smaller scale.


Author(s):  
James M. Fox ◽  
David C. Van Essen ◽  
Tobias Delbrück ◽  
Jack Gallant ◽  
Charles H. Anderson

1995 ◽  
Vol 73 (4) ◽  
pp. 1721-1723 ◽  
Author(s):  
D. F. Bossut ◽  
E. R. Perl

1. The effects of sympathetic stimulation and close arterial injection of norepinephrine were tested on cutaneous myelinated-fiber (A delta) mechanical nociceptors [high-threshold mechanoreceptors-(MyHTMs)] from normal and from partially transsected nerves. 2. Neither sympathetic stimulation nor close arterial injection of norepinephrine (200 ng) excited MyHTMs (18) recorded from the uninjured great auricular nerve of adult rabbits. 3. MyHTMs (58) conducting across the site of partial cut lesions, made 2 to 28 days previously, had threshold and responsiveness to mechanical stimuli, receptive field organization, and absence of background discharge typical of such elements in normal nerve. 4. Four MyHTMs recorded from the injured nerves were excited by sympathetic stimulation and/or norepinephrine injection but only one gave more than two impulses within 60 s to either form of stimulation. 5. The meagerness of the sympathetic and adrenergic excitation of MyHTMs after nerve injury contrasts with that observed under similar conditions for C-fiber polymodal nociceptors. Therefore, induction of adrenergic responsiveness in nociceptors after partial denervation in cutaneous MyHTMs appears to be less important for mechanisms related to pathogenic pain than alterations in certain C-fiber nociceptors.


Sign in / Sign up

Export Citation Format

Share Document