scholarly journals The globalization theorem for the Curvature-Dimension condition

Author(s):  
Fabio Cavalletti ◽  
Emanuel Milman

AbstractThe Lott–Sturm–Villani Curvature-Dimension condition provides a synthetic notion for a metric-measure space to have Ricci-curvature bounded from below and dimension bounded from above. We prove that it is enough to verify this condition locally: an essentially non-branching metric-measure space $$(X,\mathsf {d},{\mathfrak {m}})$$ ( X , d , m ) (so that $$(\text {supp}({\mathfrak {m}}),\mathsf {d})$$ ( supp ( m ) , d ) is a length-space and $${\mathfrak {m}}(X) < \infty $$ m ( X ) < ∞ ) verifying the local Curvature-Dimension condition $${\mathsf {CD}}_{loc}(K,N)$$ CD loc ( K , N ) with parameters $$K \in {\mathbb {R}}$$ K ∈ R and $$N \in (1,\infty )$$ N ∈ ( 1 , ∞ ) , also verifies the global Curvature-Dimension condition $${\mathsf {CD}}(K,N)$$ CD ( K , N ) . In other words, the Curvature-Dimension condition enjoys the globalization (or local-to-global) property, answering a question which had remained open since the beginning of the theory. For the proof, we establish an equivalence between $$L^1$$ L 1 - and $$L^2$$ L 2 -optimal-transport–based interpolation. The challenge is not merely a technical one, and several new conceptual ingredients which are of independent interest are developed: an explicit change-of-variables formula for densities of Wasserstein geodesics depending on a second-order temporal derivative of associated Kantorovich potentials; a surprising third-order theory for the latter Kantorovich potentials, which holds in complete generality on any proper geodesic space; and a certain rigidity property of the change-of-variables formula, allowing us to bootstrap the a-priori available regularity. As a consequence, numerous variants of the Curvature-Dimension condition proposed by various authors throughout the years are shown to, in fact, all be equivalent in the above setting, thereby unifying the theory.

2017 ◽  
Vol 2017-3 (103) ◽  
pp. 19-28
Author(s):  
Luigi Ambrosio ◽  
Nicola Gigli ◽  
Giuseppe Savaré

Author(s):  
Виктор Николаевич Орлов ◽  
Людмила Витальевна Мустафина

В работе приводится доказательство теоремы существования и единственности аналитического решения класса нелинейных дифференциальных уравнений третьего порядка, правая часть которого представлена полиномом шестой степени, в комплексной области. Расширен класс рассматриваемых уравнений за счет новой замены переменных. Получена априорная оценка аналитического приближенного решения. Представлен вариант численного эксперимента оптимизации априорных оценок с помощью апостериорных. The article presents a proof of the theorem of the existence and uniqueness of the analytical solution of the class of nonlinear differential equations of the third order, with a polynomial right-hand side of the sixth degree, in the complex domain. The class of the considered equations has been extended by means of a new change of variables. An a priori estimate of the analytical approximate solution is obtained. A variant of the numerical experiment of optimizing a priori estimates using a posteriori estimates is presented.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Toni Heikkinen

Let Φ be anN-function. We show that a functionu∈LΦ(ℝn)belongs to the Orlicz-Sobolev spaceW1,Φ(ℝn)if and only if it satisfies the (generalized) Φ-Poincaré inequality. Under more restrictive assumptions on Φ, an analog of the result holds in a general metric measure space setting.


Mathematics ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 540 ◽  
Author(s):  
Zhang Yong ◽  
Neha Gupta ◽  
J. P. Jaiswal ◽  
Kalyanasundaram Madhu

In this paper, we study the semilocal convergence of the multi-point variant of Jarratt method under two different mild situations. The first one is the assumption that just a second-order Fréchet derivative is bounded instead of third-order. In addition, in the next one, the bound of the norm of the third order Fréchet derivative is assumed at initial iterate rather than supposing it on the domain of the nonlinear operator and it also satisfies the local ω -continuity condition in order to prove the convergence, existence-uniqueness followed by a priori error bound. During the study, it is noted that some norms and functions have to recalculate and its significance can be also seen in the numerical section.


2010 ◽  
Vol 106 (2) ◽  
pp. 283 ◽  
Author(s):  
Oscar Blasco ◽  
Vicente Casanova ◽  
Joaquín Motos

Given a metric measure space $(X,d,\mu)$, a weight $w$ defined on $(0,\infty)$ and a kernel $k_w(x,y)$ satisfying the standard fractional integral type estimates, we study the boundedness of the operators $K_w f(x)=\int_X k_w(x,y)f(y)\,d\mu(y)$ and $\tilde K_w f(x)=\int_X (k_w(x,y)-k_w(x_0,y))f(y)\,d\mu(y)$ on Lebesgue spaces $L^p(\mu)$ and generalized Lipschitz spaces $\mathrm{Lip}_\phi$, respectively, for certain range of the parameters depending on the $n$-dimension of $\mu$ and some indices associated to the weight $w$.


Sign in / Sign up

Export Citation Format

Share Document