Hilbert-Kunz multiplicity, McKay correspondence and good ideals¶in two-dimensional rational singularities

2001 ◽  
Vol 104 (3) ◽  
pp. 275-294 ◽  
Author(s):  
Kei-ichi Watanabe ◽  
Ken-ichi Yoshida
2017 ◽  
Vol 291 (2-3) ◽  
pp. 245-263 ◽  
Author(s):  
Maria Alberich-Carramiñana ◽  
Josep Àlvarez Montaner ◽  
Ferran Dachs-Cadefau

2003 ◽  
Vol 32 (2) ◽  
pp. 317-333 ◽  
Author(s):  
Oswald RIEMENSCHNEIDER

2018 ◽  
Vol 499 ◽  
pp. 450-468 ◽  
Author(s):  
Tomohiro Okuma ◽  
Kei-ichi Watanabe ◽  
Ken-ichi Yoshida

2009 ◽  
Vol 38 (1) ◽  
pp. 308-331 ◽  
Author(s):  
R. Debremaeker ◽  
V. Van Lierde

2013 ◽  
Vol 13 (03) ◽  
pp. 1350115
Author(s):  
V. VAN LIERDE

Let (R, m) be a two-dimensional Muhly rational singularity, i.e. the residue field R/m is algebraically closed and the associated graded ring is an integrally closed domain. The goal of this paper is to use immediate quadratic transforms and degree coefficients to investigate complete ideals that are almost adjacent to m, i.e. [Formula: see text].


2016 ◽  
Vol 221 (1) ◽  
pp. 69-110 ◽  
Author(s):  
SHIRO GOTO ◽  
KAZUHO OZEKI ◽  
RYO TAKAHASHI ◽  
KEI-ICHI WATANABE ◽  
KEN-ICHI YOSHIDA

The main aim of this paper is to classify Ulrich ideals and Ulrich modules over two-dimensional Gorenstein rational singularities (rational double points) from a geometric point of view. To achieve this purpose, we introduce the notion of (weakly) special Cohen–Macaulay modules with respect to ideals, and study the relationship between those modules and Ulrich modules with respect to good ideals.


2016 ◽  
Vol 65 (2) ◽  
pp. 287-320 ◽  
Author(s):  
Maria Alberich-Carramiñana ◽  
Josep Àlvarez Montaner ◽  
Ferran Dachs-Cadefau

2017 ◽  
Vol 304 ◽  
pp. 769-792 ◽  
Author(s):  
Maria Alberich-Carramiñana ◽  
Josep Àlvarez Montaner ◽  
Ferran Dachs-Cadefau ◽  
Víctor González-Alonso

Sign in / Sign up

Export Citation Format

Share Document