Recognition and measurement gas-liquid two-phase flow in a vertical concentric annulus at high pressures

2017 ◽  
Vol 54 (2) ◽  
pp. 353-362 ◽  
Author(s):  
Hao Li ◽  
Baojiang Sun ◽  
Yanli Guo ◽  
Yonghai Gao ◽  
Xinxin Zhao
Author(s):  
Fakorede D. ◽  
Nyong O. E. ◽  
Ifere M. ◽  
Bepaye A ◽  
Igbong D.I ◽  
...  

AIChE Journal ◽  
2007 ◽  
Vol 53 (10) ◽  
pp. 2493-2504 ◽  
Author(s):  
N. K. Omebere-Iyari ◽  
B. J. Azzopardi ◽  
Y. Ladam

SPE Journal ◽  
2021 ◽  
pp. 1-20
Author(s):  
Luigi Raimondi

Summary In this paper, I present numerical results of gas/liquid flows in pipelines obtained from a new simulation code. One difference, with respect to other 1D fluid dynamic commercial simulation products, is the use of a compositional approach to the problem: This is rarely found in published articles about gas/liquid flow in the oil and gas industry. It is shown that the algorithm can calculate both pressure and material fast waves generated during the transportation of gas and liquid in pipes. The solution algorithm is based on the application of a two-fluid model to the mass, momentum, and energy conservation equations, which are solved using a mixed implicit-explicit integration schema. Closure equations for the calculation of interface stress are taken from literature articles. A dam-break simulation (i.e., a Riemann initial value problem) is presented as a severe test case for validation of the two-phase flow algorithm. Because the code is able to capture sharp and fast changes in the liquid holdup connected to the formation of pressure waves, it is applied to the simulation of slug flow without the use of steady-state “unit cell” models and slug tracking functions. In this context, the experimental results on pseudoslug formation in inclined pipes at high pressures, published by the Tulsa University Fluid Flow Project (TUFFP), are used to compare simulated results with experimental data. The last part is dedicated to the simulation of some cases taken from a classical flow-map of a fundamental article by Taitel and Dukler (1976). At constant liquid superficial velocity, the formation of liquid slugs and their subsequent termination with the increase of gas flow rate is simulated with details never previously presented.


1996 ◽  
Vol 62 (594) ◽  
pp. 419-426
Author(s):  
Yoichi SHIOMI ◽  
Mamoru OZAWA ◽  
Hiroaki KUTSUNA ◽  
Koji AKAGAWA

Sign in / Sign up

Export Citation Format

Share Document