high pressures
Recently Published Documents





2022 ◽  
Vol 12 (2) ◽  
pp. 874
Yao Wei ◽  
Francesco Macheda ◽  
Zelong Zhao ◽  
Terence Tse ◽  
Evgeny Plekhanov ◽  

Hydrogen-rich superhydrides are promising high-Tc superconductors, with superconductivity experimentally observed near room temperature, as shown in recently discovered lanthanide superhydrides at very high pressures, e.g., LaH10 at 170 GPa and CeH9 at 150 GPa. Superconductivity is believed to be closely related to the high vibrational modes of the bound hydrogen ions. Here, we studied the limit of extreme pressures (above 200 GPa) where lanthanide hydrides with large hydrogen content have been reported. We focused on LaH16 and CeH16, two prototype candidates for achieving a large electronic contribution from hydrogen in the electron–phonon coupling. In this work, we propose a first-principles calculation platform with the inclusion of many-body corrections to evaluate the detailed physical properties of the Ce–H and La–H systems and to understand the structure, stability, and superconductivity of these systems at ultra-high pressure. We provide a practical approach to further investigate conventional superconductivity in hydrogen-rich superhydrides. We report that density functional theory provides accurate structure and phonon frequencies, but many-body corrections lead to an increase of the critical temperature, which is associated with the spectral weight transfer of the f-states.

Membranes ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 84
Juan Wang

Amphotericin B (AmB) is an antifungal drug that rarely develops resistance. It has an affinity with the cholesterol on mammalian cell membranes, disrupting the structure and function of the membranes, which are also affected by potassium ions. However, the mechanism is unclear. In this paper, the Langmuir monolayer method was used to study the effects of potassium ions on the surface pressure–mean molecular area of isotherms, elastic modulus and the surface pressure–time curves of a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/cholesterol (DPPC/Chol) monolayer and a DPPC/Chol/AmB monolayer. The morphology and thickness of the Langmuir–Blodgett films were studied via atomic force microscopy. The results showed that AmB can increase the mean molecular area of the DPPC/Chol mixed monolayer at low pressures (15 mN/m) but reduces it at high pressures (30 mN/m). The potassium ions may interfere with the effect of AmB in different ways. The potassium ions can enhance the influence of AmB on the stability of monolayer at low surface pressures, but weaken it at high surface pressures. The potassium ions showed significant interference with the interaction between AmB and the cholesterol-enriched region. The results are helpful for us to understand how the effect of amphotericin B on the phospholipid membrane is interfered with by potassium ions when amphotericin B enters mammalian cell membrane.

2022 ◽  
Vol 12 (1) ◽  
E. B. Watkins ◽  
R. C. Huber ◽  
C. M. Childs ◽  
A. Salamat ◽  
J. S. Pigott ◽  

AbstractPolyethylene (C2H4)n was compressed to pressures between 10 and 30 GPa in a diamond anvil cell (DAC) and laser heated above 2500 K for approximately one second. This resulted in the chemical decomposition of the polymer into carbon and hydrocarbon reaction products. After quenching to ambient temperature, the decomposition products were measured in the DAC at pressures ranging from ambient to 29 GPa using a combination of x-ray diffraction (XRD) and small angle x-ray scattering (SAXS). XRD identified cubic diamond and methane as the predominant product species with their pressure–volume relationships exhibiting strong correlations to the diamond and methane equations of state. Length scales associated with the diamond products, obtained from SAXS measurements, indicate the formation of nanodiamonds with a radius of gyration between 12 and 35 nm consistent with 32–90 nm diameter spherical particles. These results are in good agreement with the predicted product composition under thermodynamic and chemical equilibrium.

2022 ◽  
Jiachen Li ◽  
Jinyu Guo ◽  
Hongjie Dai

CO2 dissolved in aqueous solutions is of wide ranging importance from CO2 capture, storage and photo-/electro-reduction in the fight against global warming, to CO2 analysis in various liquids including natural waterbodies and consumer drinking products. Here we developed micro-scale infrared (IR) spectroscopy for in-situ dynamic monitoring and quantitating CO2(aq) in aqueous solutions with high time resolutions under various conditions including CO2 gas bubbling and high pressures. The quantized CO2(g) rotational state transitions were observed to quench when dissolved in water to form CO2(aq) solvated by water molecules, accompanied by increased H2O IR absorption. An accurate CO2 molar extinction coefficient ε was derived for in-situ CO2(aq) quantification up to 58 atm. For the first time, we directly measured CO2(aq) concentrations in electrolytes under CO2(g) bubbling and high pressure conditions. In KHCO3 electrolytes with CO2(aq) > ~ 1 M, CO2 electroreduction (CO2RR) to formate reaches > 98% Faradaic efficiencies on copper (Cu2O/Cu) based electrocatalyst. Further, we probed CO2 dissolution/desolvation kinetics important to energy and environmental applications dynamically, revealing large hysteresis and ultra-slow reversal of CO2(aq) supersaturation in water, with implications to CO2 capture, storage and supersaturation phenomena in natural water bodies.

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 128
Masatoshi Nishi ◽  
Shigeru Tanaka ◽  
Akihisa Mori ◽  
Matej Vesenjak ◽  
Zoran Ren ◽  

Cellular metals exhibit diverse properties, depending on their geometries and base materials. This study investigated the mechanism of high-pressure generation during the high-velocity impact of unidirectional cellular (UniPore) materials. Cubic UniPore copper samples were mounted on a projectile and subjected to impact loading using a powder gun to induce direct impact of samples. The specimens exhibited a unique phenomenon of high-pressure generation near the pores during compression. We elucidate the mechanism of the high-pressure phenomenon and discuss the pore geometries that contribute to the generation of high pressures.

Athenea ◽  
2022 ◽  
Vol 2 (6) ◽  
pp. 28-42
Alberto Echegaray

This article presents an approach to the problem of ceramic types adhesion, applying energy and matter balance to the established control volume (cyclone) with the use of mathematical formulas that are interrelated to develop mathematical calculations and establish a new mathematical model The first results are obtained by operating the energy balance considering the collision of particles, using the principle of conservation of energy, the first law of thermodynamics, in order to obtain information that allows describing the phenomena of thermoplasticity and creep, in the formation of adhesions, from a physicochemical and kinetic point of view, which will serve as the basis for understanding their effect. As a result, an energy value of 660 kJ / mol was obtained, sufficient energy to start the transformation of the solid particles to a state of thermo-flow that allows the adhesion phenomenon to be started. Keywords: Adhesion, energy balance, cyclones, elutriation, eutectoid, fayalite, thermoplasticity. References [1]O. Bustamante. “Dissipation of mechanical energy in the discharge of a hydrocyclone”. (Dyna, Ed.) The network of Scientific Journals of Latin America, the Caribbean, Spain, and Portugal, vol. 80 (181), Pages 136-143, 2013. [2]K.Petersen, P.Aldrich, and D.Van.,”Hydrocyclone underflow monitoring using image processing methods. Minerals Engineering”, pp. 301-315,1996. [3]M. Farghaly,” Controlled Wash Water Injection to the hydrocyclone underflow” [Ph.D. Thesis]. Erlangen, FAU, 2009. [4]M, Schneider, and T. Neesse. “Overflow-control system for a hydrocyclone battery. Int. J. Miner. Process". 74, pp. 339 – 343, 2004. [5]J.Bergström., “Flow field and fiber fractionation studies in hydro cyclones” [Ph.D. Thesis] Stockholm, Sweden, Royal Institute of Technology, 2006. [6]C, Liu, L. Wang, and Q. Lui., “Investigation of energy loss mechanisms in cyclone separators”. Chemical Engineering Technology 28, pp. 1182-1190, 2005. [7]O.Dam. & E.Jeffes.,.”Model for detailed assessment of chemical composition of reduced iron ores from single measurement”. Ironmaking and Steelmaking, 1987. [8]E. Ringdalen., “Softening and melting of SiO2 an important parameter for reactions with quartz in Si production” pp 43-44, 2016.

Hailong Zhu ◽  
Yifan Wu ◽  
Qixiang Huang ◽  
Kechang Ren ◽  
Yurui Li

Abstract The striation plasmas are usually generated in positive column of glow discharge, in which abundant and complex physics are involved, especially, in medium or high pressures. This paper was aimed at investigating the formation and deformation of helium striation plasmas at kPa level pressures. The characteristics of helium striation plasmas, especially, the optical emission characteristics were investigated. The emission lines of 706.52 nm and 391.44 nm related to energetic electrons and high energy metastable helium atoms were focused on during the discharge process. Formation of striation plasmas in helium glow discharge, is mainly associated with the instability resulting from stepwise ionization vis high energy metastable state atoms, Maxwellization of electron distribution functions and gas heating. The deformation effect of helium striation plasmas is very significant when a small amount of nitrogen or oxygen is mixed into the discharge plasmas. The reduction of mean electron energy and the consumption of high energy metastable helium atoms are the potential reasons for deformation of striation plasmas.

2022 ◽  
Vol 128 (1) ◽  
Vatsa Gandhi ◽  
Suraj Ravindran ◽  
Guruswami Ravichandran

Sign in / Sign up

Export Citation Format

Share Document