Gas/Liquid Two-Phase Flow in Pipes: Slugs, Classical Flow-Map, and 1D Compositional Simulation

SPE Journal ◽  
2021 ◽  
pp. 1-20
Author(s):  
Luigi Raimondi

Summary In this paper, I present numerical results of gas/liquid flows in pipelines obtained from a new simulation code. One difference, with respect to other 1D fluid dynamic commercial simulation products, is the use of a compositional approach to the problem: This is rarely found in published articles about gas/liquid flow in the oil and gas industry. It is shown that the algorithm can calculate both pressure and material fast waves generated during the transportation of gas and liquid in pipes. The solution algorithm is based on the application of a two-fluid model to the mass, momentum, and energy conservation equations, which are solved using a mixed implicit-explicit integration schema. Closure equations for the calculation of interface stress are taken from literature articles. A dam-break simulation (i.e., a Riemann initial value problem) is presented as a severe test case for validation of the two-phase flow algorithm. Because the code is able to capture sharp and fast changes in the liquid holdup connected to the formation of pressure waves, it is applied to the simulation of slug flow without the use of steady-state “unit cell” models and slug tracking functions. In this context, the experimental results on pseudoslug formation in inclined pipes at high pressures, published by the Tulsa University Fluid Flow Project (TUFFP), are used to compare simulated results with experimental data. The last part is dedicated to the simulation of some cases taken from a classical flow-map of a fundamental article by Taitel and Dukler (1976). At constant liquid superficial velocity, the formation of liquid slugs and their subsequent termination with the increase of gas flow rate is simulated with details never previously presented.

Author(s):  
Marco Pellegrini ◽  
Giulia Agostinelli ◽  
Hidetoshi Okada ◽  
Masanori Naitoh

Steam condensation is characterized by a relatively large interfacial region between gas and liquid which, in computational fluid dynamic (CFD) analyses, allows the creation of a discretized domain whose average cell size is larger than the interface itself. For this reason generally one fluid model with interface tracking (e.g. volume of fluid method, VOF) is employed for its solution in CFD, since the solution of the interface requires a reasonable amount of cells, reducing the modeling efforts. However, for some particular condensation applications, requiring the computation of long transients or the steam ejected through a large number of holes, one-fluid model becomes computationally too expensive for providing engineering information, and a two-fluid model (i.e. Eulerian two-phase flow) is preferable. Eulerian two-phase flow requires the introduction of closure terms representing the interactions between the two fluids in particular, in the condensation case, drag and heat transfer. Both terms involve the description of the interaction area whose definition is different from the typical one adopted in the boiling analyses. In the present work a simple but effective formulation for the interaction area is given based on the volume fraction gradient and then applied to a validation test case of steam bubbling in various subcooling conditions. It has been shown that this method gives realistic values of bubble detachment time, bubble penetration for the cases of interest in the nuclear application and in the particular application to the Fukushima Daiichi accident.


2017 ◽  
Vol 47 (1) ◽  
pp. 49-68 ◽  
Author(s):  
Arash Kadivar ◽  
Ebrahim Nemati Lay

Abstract Continuous gas-lift in a typical oil well was simulated using computational fluid dynamic (CFD) technique. A multi fluid model based on the momentum transfer between liquid and gas bubbles was employed to simulate two-phase flow in a vertical pipe. The accuracy of the model was investigated through comparison of numerical predictions with experimental data. The model then was used to study the dynamic behaviour of the two-phase flow around injection point in details. The predictions by the model were compared with other empirical correlations, as well. To obtain an optimum condition of gas-lift, the influence of the effective parameters including the quantity of injected gas, tubing diameter and bubble size distribution were investigated. The results revealed that increasing tubing diameter, the injected gas rate and decreasing bubble diameter improve gas-lift performance.


Author(s):  
Marco Pellegrini ◽  
Giulia Agostinelli ◽  
Hidetoshi Okada ◽  
Masanori Naitoh

Steam condensation is characterized by a relatively large interfacial region between gas and liquid which, in computational fluid dynamic (CFD) analyses, allows the creation of a discretized domain whose average cell size is larger than the interface itself. For this reason generally one fluid model with interface tracking (e.g. volume of fluid method, VOF) is employed for its solution in CFD, since the solution of the interface requires a reasonable amount of cells, reducing the modeling efforts. However, for some particular condensation applications, requiring the computation of long transients or the steam ejected through a large number of holes, one-fluid model becomes computationally too expensive for providing engineering information, and a two-fluid model (i.e. Eulerian two-phase flow) is preferable. Eulerian two-phase flow requires the introduction of closure terms representing the interactions between the two fluids in particular, in the condensation case, drag and heat transfer. Both terms involve the description of the interaction area whose definition is different from the typical one adopted in the boiling analyses. In the present work a simple but effective formulation for the interaction area is given based on the volume fraction gradient and then applied to a validation test case of steam bubbling in various subcooling conditions. It has been shown that this method gives realistic values of bubble detachment time, bubble penetration for the cases of interest in the nuclear application and in the particular application to the Fukushima Daiichi accident.


2003 ◽  
Vol 3 ◽  
pp. 266-270
Author(s):  
B.H. Khudjuyerov ◽  
I.A. Chuliev

The problem of the stability of a two-phase flow is considered. The solution of the stability equations is performed by the spectral method using polynomials of Chebyshev. A decrease in the stability region gas flow with the addition of particles of the solid phase. The analysis influence on the stability characteristic of Stokes and Archimedes forces.


2021 ◽  
Vol 33 (3) ◽  
pp. 033324
Author(s):  
Alejandro Clausse ◽  
Martín López de Bertodano

2001 ◽  
Vol 123 (4) ◽  
pp. 811-818 ◽  
Author(s):  
Jun Ishimoto ◽  
Mamoru Oike ◽  
Kenjiro Kamijo

The two-dimensional characteristics of the vapor-liquid two-phase flow of liquid helium in a pipe are numerically investigated to realize the further development and high performance of new cryogenic engineering applications. First, the governing equations of the two-phase flow of liquid helium based on the unsteady thermal nonequilibrium multi-fluid model are presented and several flow characteristics are numerically calculated, taking into account the effect of superfluidity. Based on the numerical results, the two-dimensional structure of the two-phase flow of liquid helium is shown in detail, and it is also found that the phase transition of the normal fluid to the superfluid and the generation of superfluid counterflow against normal fluid flow are conspicuous in the large gas phase volume fraction region where the liquid to gas phase change actively occurs. Furthermore, it is clarified that the mechanism of the He I to He II phase transition caused by the temperature decrease is due to the deprivation of latent heat for vaporization from the liquid phase. According to these theoretical results, the fundamental characteristics of the cryogenic two-phase flow are predicted. The numerical results obtained should contribute to the realization of advanced cryogenic industrial applications.


Author(s):  
David Heinze ◽  
Thomas Schulenberg ◽  
Lars Behnke

A simulation model for the direct contact condensation of steam in subcooled water is presented that allows determination of major parameters of the process, such as the jet penetration length. Entrainment of water by the steam jet is modeled based on the Kelvin–Helmholtz and Rayleigh–Taylor instability theories. Primary atomization due to acceleration of interfacial waves and secondary atomization due to aerodynamic forces account for the initial size of entrained droplets. The resulting steam-water two-phase flow is simulated based on a one-dimensional two-fluid model. An interfacial area transport equation is used to track changes of the interfacial area density due to droplet entrainment and steam condensation. Interfacial heat and mass transfer rates during condensation are calculated using the two-resistance model. The resulting two-phase flow equations constitute a system of ordinary differential equations, which is solved by means of the explicit Runge–Kutta–Fehlberg algorithm. The simulation results are in good qualitative agreement with published experimental data over a wide range of pool temperatures and mass flow rates.


2021 ◽  
Author(s):  
Ekhwaiter Abobaker ◽  
Abadelhalim Elsanoose ◽  
Mohammad Azizur Rahman ◽  
Faisal Khan ◽  
Amer Aborig ◽  
...  

Abstract Perforation is the final stage in well completion that helps to connect reservoir formations to wellbores during hydrocarbon production. The drilling perforation technique maximizes the reservoir productivity index by minimizing damage. This can be best accomplished by attaining a better understanding of fluid flows that occur in the near-wellbore region during oil and gas operations. The present work aims to enhance oil recovery by modelling a two-phase flow through the near-wellbore region, thereby expanding industry knowledge about well performance. An experimental procedure was conducted to investigate the behavior of two-phase flow through a cylindrical perforation tunnel. Statistical analysis was coupled with numerical simulation to expand the investigation of fluid flow in the near-wellbore region that cannot be obtained experimentally. The statistical analysis investigated the effect of several parameters, including the liquid and gas flow rate, liquid viscosity, permeability, and porosity, on the injection build-up pressure and the time needed to reach a steady-state flow condition. Design-Expert® Design of Experiments (DoE) software was used to determine the numerical simulation runs using the ANOVA analysis with a Box-Behnken Design (BBD) model and ANSYS-FLUENT was used to analyses the numerical simulation of the porous media tunnel by applying the volume of fluid method (VOF). The experimental data were validated to the numerical results, and the comparison of results was in good agreement. The numerical and statistical analysis demonstrated each investigated parameter’s effect. The permeability, flow rate, and viscosity of the liquid significantly affect the injection pressure build-up profile, and porosity and gas flow rate substantially affect the time required to attain steady-state conditions. In addition, two correlations obtained from the statistical analysis can be used to predict the injection build-up pressure and the required time to reach steady state for different scenarios. This work will contribute to the clarification and understanding of the behavior of multiphase flow in the near-wellbore region.


2016 ◽  
Vol 138 (9) ◽  
Author(s):  
Shuichiro Miwa ◽  
Takashi Hibiki ◽  
Michitsugu Mori

Fluctuating force induced by horizontal gas–liquid two-phase flow on 90 deg pipe bend at atmospheric pressure condition is considered. Analysis was conducted to develop a model which is capable of predicting the peak force fluctuation frequency and magnitudes, particularly at the stratified wavy two-phase flow regime. The proposed model was developed from the local instantaneous two-fluid model, and adopting guided acoustic theory and dynamic properties of one-dimensional (1D) waves to consider the collisional force due to the interaction between dynamic waves and structure. Comparing the developed model with experimental database, it was found that the main contribution of the force fluctuation due to stratified wavy flow is from the momentum and pressure fluctuations, and collisional effects. The collisional effect is due to the fluid–solid interaction of dynamic wave, which is named as the wave collision force. Newly developed model is capable of predicting the force fluctuations and dominant frequency range with satisfactory accuracy for the flow induced vibration (FIV) caused by stratified wavy two-phase flow in 52.5 mm inner diameter (ID) pipe bend.


Sign in / Sign up

Export Citation Format

Share Document