Diffuse interface simulation of bubble rising process: a comparison of adaptive mesh refinement and arbitrary lagrange-euler methods

2018 ◽  
Vol 54 (6) ◽  
pp. 1767-1778 ◽  
Author(s):  
Ye Wang ◽  
Jiejin Cai ◽  
Qiong Li ◽  
Huaqiang Yin ◽  
Xingtuan Yang
Author(s):  
Gabriel F. Barros ◽  
Malú Grave ◽  
Alex Viguerie ◽  
Alessandro Reali ◽  
Alvaro L. G. A. Coutinho

AbstractDynamic mode decomposition (DMD) is a powerful data-driven method used to extract spatio-temporal coherent structures that dictate a given dynamical system. The method consists of stacking collected temporal snapshots into a matrix and mapping the nonlinear dynamics using a linear operator. The classical procedure considers that snapshots possess the same dimensionality for all the observable data. However, this often does not occur in numerical simulations with adaptive mesh refinement/coarsening schemes (AMR/C). This paper proposes a strategy to enable DMD to extract features from observations with different mesh topologies and dimensions, such as those found in AMR/C simulations. For this purpose, the adaptive snapshots are projected onto the same reference function space, enabling the use of snapshot-based methods such as DMD. The present strategy is applied to challenging AMR/C simulations: a continuous diffusion–reaction epidemiological model for COVID-19, a density-driven gravity current simulation, and a bubble rising problem. We also evaluate the DMD efficiency to reconstruct the dynamics and some relevant quantities of interest. In particular, for the SEIRD model and the bubble rising problem, we evaluate DMD’s ability to extrapolate in time (short-time future estimates).


2018 ◽  
Vol 50 (04) ◽  
pp. 561-570
Author(s):  
I. A. QAZI ◽  
A. F. ABBASI ◽  
M. S. JAMALI ◽  
INTIZAR INTIZAR ◽  
A. TUNIO ◽  
...  

Author(s):  
Alexander Haberl ◽  
Dirk Praetorius ◽  
Stefan Schimanko ◽  
Martin Vohralík

AbstractWe consider a second-order elliptic boundary value problem with strongly monotone and Lipschitz-continuous nonlinearity. We design and study its adaptive numerical approximation interconnecting a finite element discretization, the Banach–Picard linearization, and a contractive linear algebraic solver. In particular, we identify stopping criteria for the algebraic solver that on the one hand do not request an overly tight tolerance but on the other hand are sufficient for the inexact (perturbed) Banach–Picard linearization to remain contractive. Similarly, we identify suitable stopping criteria for the Banach–Picard iteration that leave an amount of linearization error that is not harmful for the residual a posteriori error estimate to steer reliably the adaptive mesh-refinement. For the resulting algorithm, we prove a contraction of the (doubly) inexact iterates after some amount of steps of mesh-refinement/linearization/algebraic solver, leading to its linear convergence. Moreover, for usual mesh-refinement rules, we also prove that the overall error decays at the optimal rate with respect to the number of elements (degrees of freedom) added with respect to the initial mesh. Finally, we prove that our fully adaptive algorithm drives the overall error down with the same optimal rate also with respect to the overall algorithmic cost expressed as the cumulated sum of the number of mesh elements over all mesh-refinement, linearization, and algebraic solver steps. Numerical experiments support these theoretical findings and illustrate the optimal overall algorithmic cost of the fully adaptive algorithm on several test cases.


Author(s):  
Weiqun Zhang ◽  
Andrew Myers ◽  
Kevin Gott ◽  
Ann Almgren ◽  
John Bell

Block-structured adaptive mesh refinement (AMR) provides the basis for the temporal and spatial discretization strategy for a number of Exascale Computing Project applications in the areas of accelerator design, additive manufacturing, astrophysics, combustion, cosmology, multiphase flow, and wind plant modeling. AMReX is a software framework that provides a unified infrastructure with the functionality needed for these and other AMR applications to be able to effectively and efficiently utilize machines from laptops to exascale architectures. AMR reduces the computational cost and memory footprint compared to a uniform mesh while preserving accurate descriptions of different physical processes in complex multiphysics algorithms. AMReX supports algorithms that solve systems of partial differential equations in simple or complex geometries and those that use particles and/or particle–mesh operations to represent component physical processes. In this article, we will discuss the core elements of the AMReX framework such as data containers and iterators as well as several specialized operations to meet the needs of the application projects. In addition, we will highlight the strategy that the AMReX team is pursuing to achieve highly performant code across a range of accelerator-based architectures for a variety of different applications.


Sign in / Sign up

Export Citation Format

Share Document