accelerator design
Recently Published Documents


TOTAL DOCUMENTS

247
(FIVE YEARS 91)

H-INDEX

14
(FIVE YEARS 4)

2022 ◽  
Vol 18 (2) ◽  
pp. 1-20
Author(s):  
Yandong Luo ◽  
Panni Wang ◽  
Shimeng Yu

In this article, we propose a hardware accelerator design using ferroelectric transistor (FeFET)-based hybrid precision synapse (HPS) for deep neural network (DNN) on-chip training. The drain erase scheme for FeFET programming is incorporated for both FeFET HPS design and FeFET buffer design. By using drain erase, high-density FeFET buffers can be integrated onchip to store the intermediate input-output activations and gradients, which reduces the energy consuming off-chip DRAM access. Architectural evaluation results show that the energy efficiency could be improved by 1.2× ∼ 2.1×, 3.9× ∼ 6.0× compared to the other HPS-based designs and emerging non-volatile memory baselines, respectively. The chip area is reduced by 19% ∼ 36% compared with designs using SRAM on-chip buffer even though the capacity of FeFET buffer is increased. Besides, by utilizing drain erase scheme for FeFET programming, the chip area is reduced by 11% ∼ 28.5% compared with the designs using body erase scheme.


2022 ◽  
Vol 82 (1) ◽  
Author(s):  
K. D. J. André ◽  
L. Aperio Bella ◽  
N. Armesto ◽  
S. A. Bogacz ◽  
D. Britzger ◽  
...  

AbstractNovel considerations are presented on the physics, apparatus and accelerator designs for a future, luminous, energy frontier electron-hadron (eh) scattering experiment at the LHC in the thirties for which key physics topics and their relation to the hadron-hadron HL-LHC physics programme are discussed. Demands are derived set by these physics topics on the design of the LHeC detector, a corresponding update of which is described. Optimisations on the accelerator design, especially the interaction region (IR), are presented. Initial accelerator considerations indicate that a common IR is possible to be built which alternately could serve eh and hh collisions while other experiments would stay on hh in either condition. A forward-backward symmetrised option of the LHeC detector is sketched which would permit extending the LHeC physics programme to also include aspects of hadron-hadron physics. The vision of a joint eh and hh physics experiment is shown to open new prospects for solving fundamental problems of high energy heavy-ion physics including the partonic structure of nuclei and the emergence of hydrodynamics in quantum field theory while the genuine TeV scale DIS physics is of unprecedented rank.


2021 ◽  
Author(s):  
Hongwu Peng ◽  
Shiyang Chen ◽  
Zhepeng Wang ◽  
Junhuan Yang ◽  
Scott A. Weitze ◽  
...  

2021 ◽  
Vol 20 (5s) ◽  
pp. 1-20
Author(s):  
Hyungmin Cho

Depthwise convolutions are widely used in convolutional neural networks (CNNs) targeting mobile and embedded systems. Depthwise convolution layers reduce the computation loads and the number of parameters compared to the conventional convolution layers. Many deep neural network (DNN) accelerators adopt an architecture that exploits the high data-reuse factor of DNN computations, such as a systolic array. However, depthwise convolutions have low data-reuse factor and under-utilize the processing elements (PEs) in systolic arrays. In this paper, we present a DNN accelerator design called RiSA, which provides a novel mechanism that boosts the PE utilization for depthwise convolutions on a systolic array with minimal overheads. In addition, the PEs in systolic arrays can be efficiently used only if the data items ( tensors ) are arranged in the desired layout. Typical DNN accelerators provide various types of PE interconnects or additional modules to flexibly rearrange the data items and manage data movements during DNN computations. RiSA provides a lightweight set of tensor management tasks within the PE array itself that eliminates the need for an additional module for tensor reshaping tasks. Using this embedded tensor reshaping, RiSA supports various DNN models, including convolutional neural networks and natural language processing models while maintaining a high area efficiency. Compared to Eyeriss v2, RiSA improves the area and energy efficiency for MobileNet-V1 inference by 1.91× and 1.31×, respectively.


2021 ◽  
Author(s):  
Mijing Sun ◽  
Li Xu ◽  
Zhenmin Li ◽  
Wei Ni ◽  
Gaoming Du ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document