Characterization of net coolant flow rate to copper boiling surfaces using two-phase particle image Velocimetry and dielectric fluid

2020 ◽  
Vol 56 (6) ◽  
pp. 1811-1823
Author(s):  
M. Harrison ◽  
A. Moita ◽  
J. Gess
2021 ◽  
Author(s):  
Matt Harrison ◽  
Joshua Gess

Abstract Using Particle Image Velocimetry (PIV), the amount of fluid required to sustain nucleate boiling was quantified to a microstructured copper circular disk. Having prepared the disk with preferential nucleation sites, an analytical model of the net coolant flow rate requirements to a single site has been produced and validated against experimental data. The model assumes that there are three primary phenomena contributing to the coolant flow rate requirements at the boiling surface; radial growth of vapor throughout incipience to departure, bubble rise, and natural convection around the periphery. The total mass flowrate is the sum of these contributing portions. The model accurately predicts the quenching fluid flow rate at low and high heat fluxes with 4% and 30% error of the measured value respectively. For the microstructured surface examined in this study, coolant flow rate requirements ranged from 0.1 to 0.16 kg/sec for a range of heat fluxes from 5.5 to 11.0 W/cm2. Under subcooled conditions, the coolant flow rate requirements plummeted to a nearly negligible value due to domination of transient conduction as the primary heat transfer mechanism at the liquid/vapor/surface interface. PIV and the validated analytical model could be used as a test standard where the amount of coolant the surface needs in relation to its heat transfer coefficient or thermal resistance is a benchmark for the efficacy of a standard surface or boiling enhancement coating/surface structure.


Author(s):  
Raju Murugan ◽  
Dhanalakshmi Sellan ◽  
Pankaj S. Kolhe

Abstract Two-fluid flow blurring atomization is characterized by the backflow recirculation of the air phase in the liquid pipe by bifurcation of the liquid and airflow. Most of the primary spray process is completed in the injector due to the penetration of air into the liquid tube. Thus, the majority of the liquid ligaments are converted into a fine spray at the outlet of the nozzle. Experiments were performed with two different air to liquid ratios (0.6 and 1) by mass, where water is considered as the liquid and airflow was kept constant (0.2 g/s). To change the ALR, the liquid flow rate was changed. Particle image velocimetry (PIV) diagnostic technique provides the full-field velocity of the spray droplets (discrete phase). It may be noted that sprays are self-seeded and PIV measurements reflect the droplet velocities instead of air velocity. To understand the effect of the spatial resolution of PIV on spray droplet velocity; experiments were conducted at three different spatial resolutions (11.8, 16.4 and 23.22 μm/pixel) for each ALR. As the ALR is increased, the mass of the liquid in the spray decreases, resulting in finer atomization and velocity of the spray droplets. This means that finer droplets are generated for the same mass of air at a lower liquid flow rate as compared to higher liquid flow rate. Note that Reynolds stresses provide an indication of the turbulent breakup of the droplet and larger magnitudes observed for higher ALR indicate finer atomization.


Sign in / Sign up

Export Citation Format

Share Document