liquid flow rate
Recently Published Documents


TOTAL DOCUMENTS

202
(FIVE YEARS 48)

H-INDEX

16
(FIVE YEARS 3)

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 135
Author(s):  
Zhenmin Cheng ◽  
Gang Luo ◽  
Yanling Tang ◽  
Dan Ling ◽  
Zhaoxuan Chen ◽  
...  

Films and rivulets are the two basic forms of dynamic liquid in a three-phase fixed bed (trickle bed), which determines the wetting efficiency of the catalyst. This paper is devoted to the conflicting wetting performance observed between non-porous glass beads and porous alumina pellets, and a parallel zone model is applied to resolve the complex liquid flow texture. This shows that in the case of glass beads, the wetting efficiencies of the catalyst along with the liquid flow rate in increasing and decreasing branches are different, especially when the gas flow rate is low. In comparison, there is almost no wetting difference for the alumina pellets with respect to liquid flow rate increasing or decreasing. The dynamic liquid is significantly more uniformly distributed over the cross-section in the Al2O3 bed than in the glass one.


2022 ◽  
Vol 6 (1) ◽  
pp. 3
Author(s):  
Saret Bun ◽  
Penghour Hong ◽  
Nattawin Chawaloesphosiya ◽  
Sreynich Pang ◽  
Sreyla Vet ◽  
...  

The present work focused on the development and evaluation of a compact electrocoagulation (EC) reactor, combined between EC and clarifier processes in continuous modes for decolorization and turbidity removal, named the integrated electrocoagulation-sedimentation reactor (IECS). The experiments were firstly conducted in the four-liter batch column in order to optimize the EC configuration and operation condition. The removal kinetics were also investigated and predicted for kinetic correlations. After various optimization steps, the IECS reactor was conducted, consisting of EC and clarifier compartments. Liquid flow pattern in EC compartment was examined through resident time distribution technique for defining the number of EC units and divided baffles. In summary, four units of EC were placed in the EC compartment of the IECS reactor with 90% in the width of three baffles. Each EC unit had two pairs of aluminum electrode plats in monopolar arrangement with a 1.5 cm gap and required a current density of 13.5 mA/cm2. For the clarifier compartment, it was mainly designed based on the batch settling test for separating the precipitated particles. The treatment performance of the IECS reactor was tested at different liquid flows in order to reduce the pollutant to a certain level. For the individual condition, liquid flow rates of 3 and 1 L/min were defined for turbidity and color, respectively. If both pollutants are presented simultaneously, a liquid flow rate of 1–2 L/min can be used for decreasing turbidity from 250 to <20 NTU and color from 6000 to <300 ADMI.


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1538
Author(s):  
Stanislav D. Svetlov ◽  
Dmitry A. Sladkovskiy ◽  
Kirill V. Semikin ◽  
Alexander V. Utemov ◽  
Rufat S. Abiev ◽  
...  

An evaporation-deposition coating method for coating the inner surface of long (>1 m) quartz tubes of small diameter has been studied by the introduction of two-phase (gas-liquid) flow with the gas core flowing in the middle and a thin liquid film of synthesis sol flowing near the hot tube wall. The operational window for the deposition of continuous titania coatings has been obtained. The temperature range for the deposition of continuous titania coatings is limited to 105–120 °C and the gas flow rate is limited to the range of 0.4‒1.0 L min−1. The liquid flow rate in the annular flow regime allows to control the coating thickness between 3 and 10 mm and the coating porosity between 10% and 20%. By increasing the liquid flow rate, the coating porosity can be substantially reduced. The coatings were characterized by X-ray diffraction, N2 chemisorption, thermogravimetric analysis, and scanning electron microscopy. The coatings were tested in the photocatalytic decomposition of methylene blue and rhodamine B under UV-light and their activity was similar to that of a commercial P25 titania catalyst. 


2021 ◽  
Author(s):  
Chao Zhou ◽  
Zuqing He ◽  
Yashu Chen ◽  
Zhifa Wang ◽  
Amol Mulunjkar ◽  
...  

Abstract Current critical flow rate models fail to accurately predict the liquid loading statuses of shale gas horizontal wells. Therefore, a new critical flow rate model for the whole wellbore of shale gas horizontal wells is established. The results of the new model are compared to those of current models through the field case analysis. The new model is based on the dynamic analysis and energy analysis of the deformed liquid-droplet, which takes into account the liquid flow rate, the liquid-droplet deformation and the energy loss caused by the change of buildup rate. The major axis of the maximum stable deformed liquid-droplet is determined based on the energy balance relation. Meanwhile, the suitable drag coefficient equation and surface tension equation applied to shale gas horizontal wells are chosen. Finally, the critical flow rate equation is established and the maximum critical flow rate of the whole wellbore is chosen as the criterion for liquid loading prediction. The precision of liquid loading prediction of the new model is compared to those of the four current models, including Belfroid's model, modified Li's model, liquid film model and modified Wang's model. Field parameters of 29 shale gas horizontal wells are used for the comparison, including parameters of 18 unloaded wells, 2 near loaded-up wells and 9 loaded-up wells. Field case analysis shows that the total precision of liquid loading prediction of the new model is 93.1%, which is higher compared to those of the current four models. The new model can accurately predict the liquid loading statuses of loaded-up wells and near loaded-up wells, while the prediction precision for unloaded wells is high enough for the field application, which is 88.9%. The new model can be used to effectively estimate the field liquid loading statuses of shale gas horizontal wells and choose drainage gas recovery technologies, which considers both the complex wellbore structure and the variation of flowback liquid flow rate in shale gas horizontal wells. The results of the new model fill the gap in existing studies and have a guiding significance for liquid loading prediction in shale gas horizontal wells.


2021 ◽  
Author(s):  
Serhii Matkivskyi ◽  
Liliia Khaidarova

The overwhelming majority of natural gas fields are at the final stage of development, which, along with other features, is characterized by selective watering of productive deposits and production wells. The difficulty of extracting residual gas reserves under such development conditions is associated with depletion of productive reservoirs, accumulation of fluid at the bottom of wells, corrosion of downhole equipment and the inability to reduce wellhead pressures due to restrictions on the supply and preparation of hydrocarbon products with the existing surface infrastructure. Production wells in conditions of formation water inflow into productive deposits are decommissioned after relatively small gas withdrawals. This is due both to the insufficient implementation of methods for intensifying the removal of fluid from the bottom of the wells, and to the peculiarities of the arrangement of fields, which are usually not designed for the collection and preparation of hydrocarbon products with a high liquid content. In order to remove the gas-liquid mixture from the bottom of the wells, many techniques and inventions have been developed that are widely used in production. The developed technologies are characterized by different efficiency and have a number of technological limitations, mainly due to the peculiarities of the geological structure of hydrocarbon deposits. Considering the above, there is a need for additional research in order to improve the existing and develop new technologies for the operation of water cut wells. Using the special software package, studies were carried out to optimize the operating conditions for a water cut well under conditions of active formation water inflow into gas-saturated horizons. The study was carried out for various depths of gas-lift valves (3500 m; 3000 m; 2500 m; 2000 m; 1500 m; 1000 m) and liquid flow rates (22.5 m3/day; 33.75 m3/day and 45 m3/day). Based on the research results, graphical dependences of gas flow rates and bottomhole pressure on the amount of gas-lift gas were built; the maximum gas flow rate and the required amount of gas-lift gas from the liquid flow rate; maximum gas flow rate versus liquid flow rate at different depths of gas-lift valve installation. Based on the results of statistical processing of the calculated data for each value of the liquid flow rate, the optimal value of the depth of the gas-lift valve was established. According to the results of the studies performed, to ensure the stable operation of high-water cut gas wells, it is effective to locate the gas-lift valve at a distance of 55-58 % from the wellhead of the tubing (2033-2137 m).


2021 ◽  
Author(s):  
Mohammad Rahimi-Gorji ◽  
Charlotte Debbaut ◽  
Ghader Ghorbaniasl ◽  
Sarah Cosyns ◽  
Wouter Willaert ◽  
...  

Abstract Intraperitoneal (IP) aerosolized anticancer drug delivery was recently introduced in the treatment of patients with peritoneal metastases. However, little is known on the effect of treatment parameters on the spatial distribution of the aerosol droplets in the peritoneal cavity. Here, computational fluid dynamics (CFD) modeling was used in conjunction with experimental validation in order to investigate the effect of droplet size, liquid flow rate and viscosity, and the addition of an electrostatic field on the homogeneity of IP aerosol. We found that spatial distribution is optimal with small droplet sizes (1-5 µm). Using the current clinically used technology (droplet size of 30 µm), the optimal spatial distribution of aerosol is obtained with a liquid flow rate of 0.6 mL s-1. Compared to saline, nebulization of higher viscosity liquids results in less homogeneous aerosol distribution. The addition of electrostatic precipitation significantly improves homogeneity of aerosol distribution, but no further improvement is obtained with voltages higher than 6.5 kV. The results of the current study will allow to choose treatment parameters and settings in order to optimize spatial distribution of IP aerosolized drug, with a potential to enhance its anticancer effect.


2021 ◽  
Author(s):  
Ivan Noville ◽  
Milena da Silva Maciel ◽  
Anna Luiza de Moraes y blanco de Mattos ◽  
João Gabriel Carvalho de Siqueira

Abstract This article's goal is to present some of the main flow assurance challenges faced by PETROBRAS in the Buzios oil field, from its early design stages to full operation, up to this day. These challenges include: hydrate formation in WAG (Water Alternating Gas) operations; reliability of the chemical injection system to prevent scale deposition; increasing GLR (Gas Liquid Ratio) management and operations with extremely high flowrates. Flow assurance experience amassed in Buzios and in other pre-salt oil fields, regarding all these presented issues, is particularly relevant for the development of future projects with similar characteristics, such as high liquid flow rate, high CO2 content and high scaling potential.


Measurement ◽  
2021 ◽  
pp. 109866
Author(s):  
Adam Adamkowski ◽  
Waldemar Janicki ◽  
Mariusz Lewandowski ◽  
Edson da Costa Bortoni

Author(s):  
Svetlana Rudyk ◽  
Sami Al-Khamisi ◽  
Yahya Al-Wahaibi

AbstractFactors limiting foam injection for EOR application are exceptionally low rock permeability and exceedingly high salinity of the formation water. In this regard, foam formation using internal olefin sulfonate is investigated over a wide salinity range (1, 5, 8, 10, and 12% NaCl) through 10 mD limestone. The relationships between pressure drop (dP), apparent viscosity, liquid flow rate, total flow rate, salinity, foam texture, and length of foam drops at the outlet used as an indicator of viscosity are studied. Foaming is observed up to 12% NaCl, compared to a maximum of 8% NaCl in similar core-flooding experiments with 50 mD limestone and 255 mD sandstone. Thus, the salinity limit of foam formation has increased significantly due to the low permeability, which can be explained by the fact that the narrow porous system acts like a membrane with smaller holes. Compared to the increasing dP reported for highly permeable rocks, dP linearly decreases in almost the entire range of gas fraction (fg) at 1–10% NaCl. As fg increases, dP at higher total flow rate is higher at all salinities, but the magnitude of dP controls the dependence of apparent viscosity on total flow rate. Low dP is measured at 1% and 10% NaCl, and high dP is measured at 5, 8, and 12% NaCl. In the case of low dP, the apparent viscosity is higher at higher total flow rate with increasing gas fraction, but similar at two total flow rates with increasing liquid flow rate. In the case of high dP, the apparent viscosity is higher at lower total flow rate, both with an increase in the gas fraction and with an increase in the liquid flow rate. A linear correlation is found between dP or apparent viscosity and liquid flow rate, which defines it as a governing factor of foam flow and can be considered when modeling foam flow.


2021 ◽  
Vol 9 (3) ◽  
Author(s):  
Djaenudin ◽  
Endang Saepudin ◽  
Muhamad Nasir

 Chitosan-coated L. casei containing alginate capsules (shortened as L. casei capsules) were prepared by extruding L. casei containing alginate solution at different extrusion voltage and and flow rate followed by coating the wet capsules in chitosan solution. This study aimed to determine the effect of extrusion voltage and sodium alginate liquid flow rate on the viability of L. casei bacteria in the encapsulation process. The encapsulation process in this study was carried out by the extrusion method using sodium alginate of 1% (w/v) and chitosan of 0.2% (w/v). The resulted beads were immersed in a simulated gastric fluid (SGF) (NaCl 0.2%; HCl 0.5 M with a pH of 1.5) for 1, 60, and 120 min at 37 °C. The number of L. casei cells before encapsulation was 12.3 log CFU. After encapsulation, the maximum viability of L. Casei obtained by voltage variations of 0 kV and flow rate 5 mL/min were 12.26 log CFU.  After testing the beads in SGF for 1 min, the results obtained indicate that viability of L.casei in the sodium alginate - chitosan beads with an extrusion voltage of 0 kV and 5 mL/min was 11.8 log CFU/g. The result indicated that encapsulated L. casei in the sodium alginate - chitosan beads with a voltage of 0 kV and 5 mL/min was the highest survivability level of 97.38 %. The conclusions of the study were The higher extrusion voltage can kill more L. casei while the higher extrusion flow rate can protect more L. casei.


Sign in / Sign up

Export Citation Format

Share Document