Vegetation Affects the Relative Abundances of Dominant Soil Bacterial Taxa and Soil Respiration Rates in an Upland Grassland Soil

2009 ◽  
Vol 59 (2) ◽  
pp. 335-343 ◽  
Author(s):  
Bruce C. Thomson ◽  
Nick Ostle ◽  
Niall McNamara ◽  
Mark J. Bailey ◽  
Andrew S. Whiteley ◽  
...  
2019 ◽  
Author(s):  
Nan Wang ◽  
Xiaocheng Pan

AbstractAcid rain has been regarded as a global environmental concern due to its negative effects on global ecosystems. In this study, we investigated the effects of simulated acid rain (SAR) on soil respiration rate and soil bacterial diversity in a Moso bamboo (phyllostachyspubescens) forest in subtropical China. Experimental results showed a similar seasonal pattern of soil respiration rates underdifferent SAR treatments. Seasonal mean soil respiration rates for CK (control, deionized water, pH 6.7), T1 (pH 5.6), T2 (pH 4.0) and T3 (pH 2.5) treatments were 3.44, 4.80, 4.35 and 4.51 μ mol m−2s−1, respectively. One-way analysis of variance indicated that the SAR exposure had no significant effect on soil respiration (p>0.1) and soil microbial biomass (p>0.1). Soil bacterial community diversity was calculated as the Shannon-Wiener diversity index and the results showed that only T3 treatment had significant effects on soil bacterial diversity. The DGGE analysis results revealed that T1 and CK soils had closer association and were related to the T2 soil, while T3 soil was distinctly different from the other treatments. This work highlights that the effects of SAR are important to consider in assessing the soil respiration rate, particularly under the scenario of increasing acid rain pollution.


2006 ◽  
Vol 234 ◽  
pp. S195 ◽  
Author(s):  
Aydın Tüfekçioğlu ◽  
Mehmet Küçük ◽  
Bülent Sağlam ◽  
Ertuğrul Bilgili ◽  
Lokman Altun ◽  
...  

2010 ◽  
Vol 7 (1) ◽  
pp. 315-328 ◽  
Author(s):  
Q. Deng ◽  
G. Zhou ◽  
J. Liu ◽  
S. Liu ◽  
H. Duan ◽  
...  

Abstract. Global climate change in the real world always exhibits simultaneous changes in multiple factors. Prediction of ecosystem responses to multi-factor global changes in a future world strongly relies on our understanding of their interactions. However, it is still unclear how nitrogen (N) deposition and elevated atmospheric carbon dioxide concentration [CO2] would interactively influence forest floor soil respiration in subtropical China. We assessed the main and interactive effects of elevated [CO2] and N addition on soil respiration by growing tree seedlings in ten large open-top chambers under CO2 (ambient CO2 and 700 μmol mol−1) and nitrogen (ambient and 100 kg N ha−1 yr−1) treatments. Soil respiration, soil temperature and soil moisture were measured for 30 months, as well as above-ground biomass, root biomass and soil organic matter (SOM). Results showed that soil respiration displayed strong seasonal patterns with higher values observed in the wet season (April–September) and lower values in the dry season (October–March) in all treatments. Significant exponential relationships between soil respiration rates and soil temperatures, as well as significant linear relationships between soil respiration rates and soil moistures (below 15%) were found. Both CO2 and N treatments significantly affected soil respiration, and there was significant interaction between elevated [CO2] and N addition (p<0.001, p=0.003, and p=0.006, respectively). We also observed that the stimulatory effect of individual elevated [CO2] (about 29% increased) was maintained throughout the experimental period. The positive effect of N addition was found only in 2006 (8.17% increased), and then had been weakened over time. Their combined effect on soil respiration (about 50% increased) was greater than the impact of either one alone. Mean value of annual soil respiration was 5.32 ± 0.08, 4.54 ± 0.10, 3.56 ± 0.03 and 3.53 ± 0.03 kg CO2 m−2 yr−1 in the chambers exposed to elevated [CO2] and high N deposition (CN), elevated [CO2] and ambient N deposition (CC), ambient [CO2] and high N deposition (NN), and ambient [CO2] and ambient N deposition (CK as a control), respectively. Greater above-ground biomass and root biomass was obtained in the CN, CC and NN treatments, and higher soil organic matter was observed only in the CN treatment. In conclusion, the combined effect of elevated [CO2] and N addition on soil respiration was apparent interaction. They should be evaluated in combination in subtropical forest ecosystems in China where the atmospheric CO2 and N deposition have been increasing simultaneously and remarkably.


Soil Research ◽  
2013 ◽  
Vol 51 (5) ◽  
pp. 390 ◽  
Author(s):  
C. B. Hedley ◽  
S. M. Lambie ◽  
J. L. Dando

The conversion of marginal pastoral land in New Zealand to higher biomass shrubland consisting of manuka (Leptospermum scoparium) and kanuka (Kunzea ericoides var. ericoides) offers opportunity for carbon (C) sequestration, with potential co-benefits of soil erosion control. We therefore selected two areas with different soils in different climatic regions to investigate and compare soil respiration rates, methane and nitrous oxide emission profiles, and key carbon exchange processes controlling carbon sequestration. In addition, two shrubland stands of different ages were selected in each area, providing four sites in total. Regular (almost monthly) soil respiration measurements were made over a 2-year period, with less frequent methane and nitrous oxide flux measurements, and soil sampling once at the end of the study. The cooler, wetter volcanic soils had higher total organic C (6.39 ± 0.12% v. 5.51 ± 0.17%), soil C : nitrogen (N) ratios (20.55 ± 0.20 v. 18.45 ± 0.23), and slightly lower mineral N (3.30 ± 0.74 v. 4.89 ± 0.57 mg/kg) and microbial biomass C (1131 ± 108 v. 1502 ± 37 mg/kg) than the more drought-prone, stony, sedimentary soils. Mineral-N contents at all sites indicated N-limited ecosystems for allocation of below- and above-ground C. The estimated mean annual cumulative respiration rate recorded in the volcanic soil was 10.26 ± 7.45 t CO2-C/ha.year compared with 9.85 ± 8.63 t CO2-C/ha.year in the stony sedimentary soil for the 2 years of our study. Older shrubland stands had higher respiration rates than younger stands in both study areas. Methane oxidation was estimated to be higher in the volcanic soil (4.10 ± 2.13 kg CH4-C/ha.year) than the sedimentary soil sites (2.51 ± 2.48 kg CH4-C/ha.year). The measured natural background levels of nitrous oxide emissions from these shrubland soils ranged between negligible and 0.30 ± 0.20 kg N2O-N/ha.year. A strong climatic control (temperature and moisture) on gas fluxes was observed at all sites. Our sampling strategy at each of the four sites was to estimate the mean soil respiration rates (n = 25) from an 8 by 8 m sampling grid positioned into a representative location. Soil respiration rates were also measured (by additional, less frequent sampling) in two adjacent grids (1-m offset and 100-m distant grid) to test the validity of these representative mean values. The 1-m offset grid (n = 25) provided a statistically different soil respiration rate from the main grid (n = 25) in 25% of the 12 sampling events. The 100-m grid (n = 25) provided a statistically different respiration rate to the main grid in 38% of the 26 sampling events. These differences are attributed to the spatially variable and sporadic nature of gaseous emissions from soils. The grid analysis tested the prediction uncertainty and it provides evidence for strong spatial and temporal control by edaphic processes in micro-sites. A partial least-squares regression model was used to relate the 2009 annual cumulative soil respiration to site-specific edaphic characteristics, i.e. biomass, nutrient availability, porosity and bulk density, measured at the end of that year. The model explained ≥80% of the variance at three of the four sites.


2004 ◽  
Vol 26 (3) ◽  
pp. 169-177 ◽  
Author(s):  
D.A Davidson ◽  
P.M.C Bruneau ◽  
I.C Grieve ◽  
C.A Wilson

Sign in / Sign up

Export Citation Format

Share Document