Role of nonclassical class I genes of the chicken major histocompatibility complex Rfp-Y locus in transplantation immunity

2003 ◽  
Vol 55 (9) ◽  
pp. 647-651 ◽  
Author(s):  
Pierrick Thoraval ◽  
Marielle Afanassieff ◽  
Dani�le Bouret ◽  
Gillette Luneau ◽  
Evelyne Esnault ◽  
...  
2015 ◽  
pp. 159-177
Author(s):  
Yuichi Obata ◽  
Kazuo Moriwaki ◽  
Toshihiko Shiroishi ◽  
Yoko Satta ◽  
Naoyuki Takahata ◽  
...  

1999 ◽  
Vol 189 (3) ◽  
pp. 483-491 ◽  
Author(s):  
Chew Shun Chang ◽  
Laurent Brossay ◽  
Mitchell Kronenberg ◽  
Kevin P. Kane

Classical class I major histocompatibility complex (MHC) molecules, as well as the nonclassical class I histocompatibility leukocyte antigen (HLA)-E molecule, can negatively regulate natural killer (NK) cell cytotoxicity through engagement of NK inhibitory receptors. We show that expression of murine (m)CD1.1, a nonpolymorphic nonclassical MHC class I–like molecule encoded outside the MHC, protects NK-sensitive RMA/S target cells from adherent lymphokine-activated killer cell (A-LAK) cytotoxicity. Passage of effector cells in recombinant interleukin (rIL)-2 enhanced protection by mCD1.1, suggesting an expansion of relevant A-LAK population(s) or modulation of A-LAK receptor expression. Murine CD1.1 conferred protection from lysis by rIL-2–activated spleen cells of recombination activating gene (Rag)-1−/− mice, which lack B and T cells, demonstrating that mCD1.1 can protect RMA/S cells from lysis by NK cells. An antibody specific for mCD1.1 partially restored A-LAK lysis of RMA/S.CD1.1 transfectants, indicating that cell surface mCD1.1 can confer protection from lysis; therefore, mCD1.1 possibly acts through interaction with an NK inhibitory receptor. CD1.1 is by far the most divergent class I molecule capable of regulating NK cell activity. Finally, mCD1.1 expression rendered RMA/S cells resistant to lysis by A-LAK of multiple mouse strains. The conserved structure of mCD1.1 and pattern of mCD1.1 resistance from A-LAK lysis suggest that mCD1.1 may be a ligand for a conserved NK inhibitory receptor.


2002 ◽  
Vol 196 (7) ◽  
pp. 911-921 ◽  
Author(s):  
Salim I. Khakoo ◽  
Ron Geller ◽  
Sunny Shin ◽  
Jomaquai A. Jenkins ◽  
Peter Parham

In contrast to the KIR2D:HLA-C interaction, little is known of KIR3DL1's interaction with HLA-B or the role of D0, the domain not present in KIR2D. Differences in the strength and specificity for major histocompatibility complex class I of KIR3DL1 and its common chimpanzee homologue Pt-KIR3DL1/2 were exploited to address these questions. Domain-swap, deletion, and site-directed mutants of KIR3DL1 were analyzed for HLA-B binding using a novel, positively signaling cell–cell binding assay. Natural ‘deletion’ of residues 50 and 51 from its D0 domain causes Pt-KIR3DL1/2 to bind Bw4+ HLA-B allotypes more avidly than does KIR3DL1. Deletion of these residues from KIR3DL1, or their substitution for alanine, enhanced binding of Bw4+ HLA-B. None of 15 different point mutations in D0 abrogated KIR3DL1 binding to Bw4+ HLA-B. In contrast point mutations in the D1 and D2 domains of KIR3DL1, made from knowledge of KIR2D:HLA-C interactions, disrupted binding to Bw4+ HLA-B. The results are consistent with a model in which D1 and D2 make the principal contacts between KIR3DL1 and HLA-B while D0 acts through a different mechanism to enhance the interaction. This modulatory role for D0 is compatible with natural loss of expression of the D0 domain, a repeated event in the evolution of functional KIR genes.


Sign in / Sign up

Export Citation Format

Share Document