Immunologic Research
Latest Publications


TOTAL DOCUMENTS

2232
(FIVE YEARS 191)

H-INDEX

82
(FIVE YEARS 6)

Published By Springer-Verlag

0257-277x, 0257-277x

Author(s):  
Yuji Joyo ◽  
Yohei Kawaguchi ◽  
Hiroki Yonezu ◽  
Hiroya Senda ◽  
Sanshiro Yasuma ◽  
...  

AbstractGliostatin/thymidine phosphorylase (GLS/TP) is known to have angiogenic and arthritogenic activities in the pathogenesis of rheumatoid arthritis (RA). The novel oral Janus kinase (JAK) inhibitor baricitinib has demonstrated high efficacy in RA. However, the effect of baricitinib on fibroblast-like synoviocytes (FLSs), a key component of invasive synovitis, has not been still elucidated. This study investigated whether GLS/TP production could be regulated by JAK/signal transducers and activators of transcription (STAT) signaling in FLSs derived from patients with RA. FLSs were cultured and stimulated by interferon (IFN)γ in the presence of baricitinib. Expression levels of GLS/TP were determined using reverse transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and immunocytochemistry. Phosphorylation of STAT proteins was investigated by Western blot. In cultured FLSs, GLS/TP mRNA and protein levels were significantly induced by treatment with IFNγ and these inductions were suppressed by baricitinib treatment. Baricitinib inhibited IFNγ-induced STAT1 phosphorylation, while JAK/STAT activation played a pivotal role in IFNγ-mediated GLS/TP upregulation in RA. These results suggested that baricitinib suppressed IFNγ-induced GLS/TP expression by inhibiting JAK/STAT signaling, resulting in the attenuation of neovascularization, synovial inflammation, and cartilage destruction.


Author(s):  
Moulay Yassine Belghali ◽  
Brahim Admou ◽  
Maroua Brahimi ◽  
Mouna Khouchani ◽  
Saadia Ba-M’hamed
Keyword(s):  

Author(s):  
Ori Toker ◽  
Arnon Broides ◽  
Atar Lev ◽  
Amos J. Simon ◽  
Orli Megged ◽  
...  

Author(s):  
Matthias Bock ◽  
Christian B. Bergmann ◽  
Sonja Jung ◽  
Peter Biberthaler ◽  
Laura Heimann ◽  
...  

AbstractCD4+FoxP3+ regulatory T cells (CD4+ Tregs) are known to dampen inflammation following severe trauma. Platelets were shown to augment their posttraumatic activation in burn injury, but the exact mechanisms remain unclear. We hypothesized that platelet activation mechanisms via GPIIb/IIIa, fibrinogen, and PAR4 have an immunological effect and modulate CD4+ Treg activation early after trauma. Therefore, C57Bl/6 N mice were injected with tirofiban (GPIIb/IIIa inhibition), ancrod (fibrinogen splitting enzyme), or tcY-NH2 (selective PAR4 antagonist peptide) before inducing a third-degree burn injury of 25% of the total body surface area. Changes in coagulation, and local and systemic CD4+ Treg activity were assessed via rotational thromboelastometry (ROTEM®) and phospho-flow cytometry 1 h post intervention. The inhibition of GPIIb/IIIa and fibrinogen locally led to a higher basic activity of CD4+ Tregs compared to non-inhibited animals. In contrast, PAR4 disruption on platelets locally led to an increased posttraumatic activation of CD4+ Tregs. Fibrinogen led to complete elimination of coagulation, whereas GPIIb/IIIa or PAR4 inhibition did not. GPIIb/IIIa receptor and fibrinogen inhibition increase CD4+ Tregs activity independently of trauma. Both are crucial for thrombus formation. We suggest platelets trapped in thrombi are unable to interact with CD4+ Tregs but augment their activity when circulating freely. In contrast, PAR4 seems to reduce CD4+ Treg activation following trauma. In summary, GPIIb/IIIa-, PAR4-, and fibrinogen-dependent pathways in platelets modulate CD4+ Treg baseline activity, independently from their hemostatic functionality. PAR4-dependent pathways modulate the posttraumatic interplay of platelets and CD4+ Tregs.


Author(s):  
Shuhong Chi ◽  
Jing Xue ◽  
Xiaodong Chen ◽  
Xiaoming Liu ◽  
Yanhong Ji

AbstractReliable noninvasive biomarkers are needed to accurately assess disease activity and prognosis in patients with systemic lupus erythematosus (SLE). The purpose of this study was to investigate the clinical relevance of Wnt5A with disease activity and severity with cutaneous involvement in particular in SLE patients; its concentrations in plasma and urine were examined and analyzed. In the cross-sectional study, the clinical relevance of Wnt5A protein was evaluated in both plasma and urine of SLE patients and healthy cohorts using commercial enzyme-linked immunosorbent assays (ELISA). Significantly, more abundances of Wnt5A protein were determined in both of plasmas and urines of SLE patients compared to healthy cohorts (p < 0.0001), which were even higher in active disease (AD) SLE patients relative to low disease activity (LDA) SLE patients (p < 0.0001). Meanwhile, the ROC curve analysis demonstrated that the plasma and urine Wnt5A were potential candidate biomarkers for identifying the disease activity and severity in SLE patients. The discriminant function analysis further revealed that the plasma and urine Wnt5A were separated and distinct for AD SLE patients and healthy controls. In consistence, the disease severity was correlated with the plasma and urine Wnt5A as ascertained by CLASI activity score and the prevalence of serositis in SLE patients. These results suggest that Wnt5A, as a summary measure for different inflammatory processes, could be a potential biomarker for accessing the disease activity, and a noninvasive biomarker for evaluating the disease severity in terms of cutaneous involvement in SLE patients.


Author(s):  
Sotirios G. Tsiogkas ◽  
Αthanasios Mavropoulos ◽  
Dimitrios N. Skyvalidas ◽  
Eleni Patrikiou ◽  
Niki Ntavari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document