wild mice
Recently Published Documents


TOTAL DOCUMENTS

431
(FIVE YEARS 67)

H-INDEX

39
(FIVE YEARS 3)

Author(s):  
Julia E Poje ◽  
Jose F Azevedo ◽  
Nisha Nair ◽  
Kurayi Mahachi ◽  
Lexi E Frank ◽  
...  

Abstract Lyme disease, caused by Borrelia burgdorferi sensu stricto and most commonly transmitted by Ixodes scapularis Say (Ixodida: Ixodidae), is the most common tick-borne disease in Maryland. Because B. burgdorferi s.s. is maintained in enzootic cycles among wild mice (Peromyscus spp) and Ixodes spp ticks, differing patterns of parasitism of ticks on mice could impact the infection prevalence with B. burgdorferi. We determined the infection prevalence of Peromyscus spp as well as questing and partially engorged nymphal ticks collected at six sites on private land in five counties in Maryland from May to August 2020. Questing nymph infection prevalence (NIP) was 14%. We trapped 1258 mice and collected 554 ticks and 413 ear tissue samples. The prevalence of infested Peromyscus spp varied based on host age and sex, with older and male mice more likely to be infested. We detected a significant difference amongst the proportion of attached Ixodes and the location of trapping. Similarly, the prevalence of B. burgdorferi infected Peromyscus spp mice varied between locations (average mouse infection prevalence was 40%), with the highest prevalence in locations where Ixodes were the most commonly found ticks. The B. burgdorferi infection prevalence in partially engorged I. scapularis nymphs retrieved from Peromyscus spp was ~36% which lends further support to the host infection prevalence. Local differences in distribution of infected vectors and reservoirs are important factors to consider when planning interventions to reduce Lyme disease risk.


2021 ◽  
Author(s):  
Lyn A Hinds ◽  
Steve Henry ◽  
Nikki Van de Weyer ◽  
Freya Robinson ◽  
Wendy A Ruscoe ◽  
...  

BACKGROUND: The efficacy of zinc phosphide (ZnP) for broadacre control of wild house mice in Australia is being reported by growers as increasingly variable. Have mice become less sensitive over time or are they taking a sub-lethal dose and developing aversion? In this laboratory study the sensitivity of groups of wild caught and an outbred laboratory strain of mice was assessed using oral gavage of a range of ZnP concentrations. The willingness of mice to consume ZnP-coated grains was then determined. RESULTS: Each mouse group had very similar LD50 values (72 to 79 mg ZnP per kg body weight) which are significantly higher than previously reported. Time to death post-gavage ranged between 2.5 to 48 h. ZnP coated grains (50 mg ZnP per kg grain) presented in the absence of alternative food were consumed and 94 percent of wild mice died. Mice provided with alternative food and ZnP coated wheat grains (either 25 or 50 mg ZnP per kg grain) consumed toxic and non-toxic grains, and mortality was lower (33 to 55 percent). If a sublethal amount of ZnP coated grain was consumed, aversion occurred mostly in the presence of alternative food. CONCLUSIONS: The sensitivity of wild house mice to ZnP in Australia is significantly lower than previously assumed. Under laboratory conditions ZnP coated grains coated with a new higher dose (50 mg ZnP per kg grain) were readily consumed. Consumption of toxic grain occurred when alternative food was available but was decreased. It is important to assess the efficacy of the higher ZnP dose per grain under natural field conditions, especially when background food is low.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yu-Wen Yeh ◽  
Arka Sen Chaudhuri ◽  
Ling Zhou ◽  
Yu Fang ◽  
Preben Boysen ◽  
...  

BackgroundIt is well documented that laboratory mice bred and maintained in ultra-hygienic specific pathogen-free (SPF) barriers display reduced richness and complexity of microbiota compared with wild mice. The laboratory mice profoundly lack lung parenchymal mast cells. Hence, we aimed to investigate the lung distribution of mast cells in free-living wild mice.MethodsWild house mice were trapped in South-Eastern Norway and Hemtabad, West Bengal, India. C57BL/6 laboratory mice were bred in a purposefully built, closed environment with bedding material obtained from the natural environment in order to normalize the gut microbiota of these laboratory mice to that of the wild mice, and the offspring were collected for study at eight weeks of age.ResultsMast cells were easily identified at a substantial density in the lung parenchymal tissues of wild mice from both Norway and India, which stands in clear contrast to the rare distribution of lung parenchymal mast cells in the conventional laboratory SPF mice. Consistently, wild mice also expressed higher pulmonary levels of stem cell factor, a critical growth factor for mast cell survival. Higher levels of histamine were recorded in the lung tissues of the wild mice. Interestingly, “naturalized” C57BL/6 laboratory mice which spent their entire life in a semi-natural environment developed lung parenchymal mast cells at an appreciable density.ConclusionOur observations support that environmental factors, possibly through modulation of microbiota, may impact the tissue distribution of mast cells in mouse lung parenchyma.


2021 ◽  
Vol 12 ◽  
Author(s):  
Robert W. P. Glowacki ◽  
Morgan J. Engelhart ◽  
Philip P. Ahern

The profound impact of the gut microbiome on host health has led to a revolution in biomedical research, motivating researchers from disparate fields to define the specific molecular mechanisms that mediate host-beneficial effects. The advent of genomic technologies allied to the use of model microbiomes in gnotobiotic mouse models has transformed our understanding of intestinal microbial ecology and the impact of the microbiome on the host. However, despite incredible advances, our understanding of the host-microbiome dialogue that shapes host physiology is still in its infancy. Progress has been limited by challenges associated with developing model systems that are both tractable enough to provide key mechanistic insights while also reflecting the enormous complexity of the gut ecosystem. Simplified model microbiomes have facilitated detailed interrogation of transcriptional and metabolic functions of the microbiome but do not recapitulate the interactions seen in complex communities. Conversely, intact complex communities from mice or humans provide a more physiologically relevant community type, but can limit our ability to uncover high-resolution insights into microbiome function. Moreover, complex microbiomes from lab-derived mice or humans often do not readily imprint human-like phenotypes. Therefore, improved model microbiomes that are highly defined and tractable, but that more accurately recapitulate human microbiome-induced phenotypic variation are required to improve understanding of fundamental processes governing host-microbiome mutualism. This improved understanding will enhance the translational relevance of studies that address how the microbiome promotes host health and influences disease states. Microbial exposures in wild mice, both symbiotic and infectious in nature, have recently been established to more readily recapitulate human-like phenotypes. The development of synthetic model communities from such “wild mice” therefore represents an attractive strategy to overcome the limitations of current approaches. Advances in microbial culturing approaches that allow for the generation of large and diverse libraries of isolates, coupled to ever more affordable large-scale genomic sequencing, mean that we are now ideally positioned to develop such systems. Furthermore, the development of sophisticated in vitro systems is allowing for detailed insights into host-microbiome interactions to be obtained. Here we discuss the need to leverage such approaches and highlight key challenges that remain to be addressed.


2021 ◽  
Author(s):  
Fang Wang ◽  
Shijie Li ◽  
Lingshuai Meng ◽  
Ye Kuang ◽  
Zhonghua Liu ◽  
...  

Implantation timing is key for a successful pregnancy. Short delay in embryo implantation caused by targeted gene ablation produced a cascading problem in the later stages of the pregnancy. Although several delayed implantation models have been established in wild mice, almost none of them is suitable for investigating the delay on the late events of pregnancy. Here, we report a new delayed implantation model established by the intraperitoneally administration of letrozole at 5 mg/kg body weight on the day 3 of pregnancy. In these mice, initiation of implantation was induced at will by the injection of estradiol (E2). When the estradiol (3 ng) was injected on day 4 of pregnancy (i.e., without delay), the embryo implantation restarted, and the pregnancy continued normally. However, high dose of estrogen (25 ng) caused compromised implantation. We also found that only 67% of the female mice could be pregnant normally and finally gave birth when the injection of estradiol (3 ng) was on day 5 of pregnancy (i.e., one day delay). Most of the failed pregnancies had impaired decidualization, decreased plasma progesterone levels and compromised angiogenesis. Progesterone supplementation could rescue decidualization failure in the mice. Collectively, we established a new model of delayed implantation by letrozole, which can be easily used to study the effect and mechanisms of delay of embryo implantation on the progression of late pregnancy events.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Kate L. Bowerman ◽  
Sarah C. L. Knowles ◽  
Janette E. Bradley ◽  
Laima Baltrūnaitė ◽  
Michael D. J. Lynch ◽  
...  

AbstractThe domestication of the laboratory mouse has influenced the composition of its native gut microbiome, which is now known to differ from that of its wild ancestor. However, limited exploration of the rodent gut microbiome beyond the model species Mus musculus has made it difficult to interpret microbiome variation in a broader phylogenetic context. Here, we analyse 120 de novo and 469 public metagenomically-sequenced faecal and caecal samples from 16 rodent hosts representing wild, laboratory and captive lifestyles. Distinct gut bacterial communities were observed between rodent host genera, with broadly distributed species originating from the as-yet-uncultured bacterial genera UBA9475 and UBA2821 in the families Oscillospiraceae and Lachnospiraceae, respectively. In laboratory mice, Helicobacteraceae were generally depleted relative to wild mice and specific Muribaculaceae populations were enriched in different laboratory facilities, suggesting facility-specific outgrowths of this historically dominant rodent gut family. Several bacterial families of clinical interest, including Akkermansiaceae, Streptococcaceae and Enterobacteriaceae, were inferred to have gained over half of their representative species in mice within the laboratory environment, being undetected in most wild rodents and suggesting an association between laboratory domestication and pathobiont emergence.


Author(s):  
A. Navarro-Sempere ◽  
M. García ◽  
A. S. Rodrigues ◽  
P. V. Garcia ◽  
R. Camarinho ◽  
...  

AbstractMercury accumulation has been proposed as a toxic factor that causes neurodegenerative diseases. However, the hazardous health effects of gaseous elemental mercury exposure on the spinal cord in volcanic areas have not been reported previously in the literature. To evaluate the presence of volcanogenic inorganic mercury in the spinal cord, a study was carried out in São Miguel island (Azores, Portugal) by comparing the spinal cord of mice exposed chronically to an active volcanic environment (Furnas village) with individuals not exposed (Rabo de Peixe village), through the autometallographic silver enhancement histochemical method. Moreover, a morphometric and quantification analysis of the axons was carried out. Results exhibited mercury deposits at the lumbar level of the spinal cord in the specimens captured at the site with volcanic activity (Furnas village). A decrease in axon calibre and axonal atrophy was also observed in these specimens. Given that these are relevant hallmarks in the neurodegenerative pathologies, our results highlight the importance of the surveillance of the health of populations chronically exposed to active volcanic environments.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Faisal Almalki ◽  
Eric B. Nonnecke ◽  
Patricia A. Castillo ◽  
Alex Bevin-Holder ◽  
Kristian K. Ullrich ◽  
...  

AbstractIntelectins are a family of multimeric secreted proteins that bind microbe-specific glycans. Both genetic and functional studies have suggested that intelectins have an important role in innate immunity and are involved in the etiology of various human diseases, including inflammatory bowel disease. Experiments investigating the role of intelectins in human disease using mouse models are limited by the fact that there is not a clear one-to-one relationship between intelectin genes in humans and mice, and that the number of intelectin genes varies between different mouse strains. In this study we show by gene sequence and gene expression analysis that human intelectin-1 (ITLN1) has multiple orthologues in mice, including a functional homologue Itln1; however, human intelectin-2 has no such orthologue or homologue. We confirm that all sub-strains of the C57 mouse strain have a large deletion resulting in retention of only one intelectin gene, Itln1. The majority of laboratory strains have a full complement of six intelectin genes, except CAST, SPRET, SKIVE, MOLF and PANCEVO strains, which are derived from different mouse species/subspecies and encode different complements of intelectin genes. In wild mice, intelectin deletions are polymorphic in Mus musculus castaneus and Mus musculus domesticus. Further sequence analysis shows that Itln3 and Itln5 are polymorphic pseudogenes due to premature truncating mutations, and that mouse Itln1 has undergone recent adaptive evolution. Taken together, our study shows extensive diversity in intelectin genes in both laboratory and wild-mice, suggesting a pattern of birth-and-death evolution. In addition, our data provide a foundation for further experimental investigation of the role of intelectins in disease.


Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3773
Author(s):  
Phuong Doan ◽  
Phung Nguyen ◽  
Akshaya Murugesan ◽  
Kumar Subramanian ◽  
Saravanan Konda Konda Mani ◽  
...  

Glioblastoma, an invasive high-grade brain cancer, exhibits numerous treatment challenges. Amongst the current therapies, targeting functional receptors and active signaling pathways were found to be a potential approach for treating GBM. We exploited the role of endogenous expression of GPR17, a G protein-coupled receptor (GPCR), with agonist GA-T0 in the survival and treatment of GBM. RNA sequencing was performed to understand the association of GPR17 expression with LGG and GBM. RT-PCR and immunoblotting were performed to confirm the endogenous expression of GPR17 mRNA and its encoded protein. Biological functions of GPR17 in the GBM cells was assessed by in vitro analysis. HPLC and histopathology in wild mice and an acute-toxicity analysis in a patient-derived xenograft model were performed to understand the clinical implication of GA-T0 targeting GPR17. We observed the upregulation of GPR17 in association with improved survival of LGG and GBM, confirming it as a predictive biomarker. GA-T0-stimulated GPR17 leads to the inhibition of cyclic AMP and calcium flux. GPR17 signaling activation enhances cytotoxicity against GBM cells and, in patient tissue-derived mesenchymal subtype GBM cells, induces apoptosis and prevents proliferation by stoppage of the cell cycle at the G1 phase. Modulation of the key genes involved in DNA damage, cell cycle arrest, and in several signaling pathways, including MAPK/ERK, PI3K–Akt, STAT, and NF-κB, prevents tumor regression. In vivo activation of GPR17 by GA-T0 reduces the tumor volume, uncovering the potential of GA-T0–GPR17 as a targeted therapy for GBM treatment. Conclusion: Our analysis suggests that GA-T0 targeting the GPR17 receptor presents a novel therapy for treating glioblastoma.


2021 ◽  
Author(s):  
Ho-Keun Kwon ◽  
Je Kyung Seong

AbstractLaboratory mice have long been an invaluable tool in biomedical science and have made significant contributions in research into life-threatening diseases. However, the translation of research results from mice to humans often proves difficult due to the incomplete nature of laboratory animal-based research. Hence, there is increasing demand for complementary methods or alternatives to laboratory mice that can better mimic human physiological traits and potentially bridge the translational research gap. Under these circumstances, the natural/naturalized mice including “wild”, “dirty”, “wildling”, and “wilded” systems have been found to better reflect some aspects of human pathophysiology. Here, we discuss the pros and cons of the laboratory mouse system and contemplate how wild mice and wild microbiota are able to help in refining such systems to better mimic the real-world situation and contribute to more productive translational research.


Sign in / Sign up

Export Citation Format

Share Document