Geochemical characterisation and geophysical mapping of Landfill leachates: the Marozzo canal case study (NE Italy)

2004 ◽  
Vol 45 (4) ◽  
pp. 439-447 ◽  
Author(s):  
N. Abu-Zeid ◽  
G. Bianchini ◽  
G. Santarato ◽  
C. Vaccaro
2004 ◽  
Vol 2004 (10) ◽  
pp. 315-324
Author(s):  
Jacqueline Pasanau ◽  
Jens Meinhold ◽  
Michéle Payraudeau ◽  
John Cigana ◽  
Lucie Patria

2018 ◽  
Vol 150 ◽  
pp. 338-349 ◽  
Author(s):  
Theis Raaschou Andersen ◽  
Søren Erbs Poulsen ◽  
Peter Thomsen ◽  
Katalin Havas

Hydrobiologia ◽  
2010 ◽  
Vol 688 (1) ◽  
pp. 25-35 ◽  
Author(s):  
Valentina Pieri ◽  
Jochen Vandekerkhove ◽  
Daniele Goi

Geoheritage ◽  
2018 ◽  
Vol 11 (2) ◽  
pp. 459-469 ◽  
Author(s):  
Corrado Venturini ◽  
Federico Pasquaré Mariotto
Keyword(s):  

2015 ◽  
Vol 35 ◽  
pp. 240-243 ◽  
Author(s):  
Marco Pola ◽  
Paolo Fabbri ◽  
Leonardo Piccinini ◽  
Enrico Marcolongo ◽  
Alessia Rosignoli ◽  
...  

Geosciences ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 446
Author(s):  
Theis Raaschou Andersen

The continuous growth of cities in combination with future climate changes present urban planners with significant challenges, as traditional urban sewer systems are typically designed for the present climate. An easy and economically feasible way to mitigate this is to introduce a Sustainable Urban Drainage System (SUDS) in the urban area. However, the lack of knowledge about the geological and hydrogeological setting hampers the use of SUDS. In this study, 1315 ha of high-density electromagnetic (DUALEM-421S) data, detailed lithological soil descriptions of 614 boreholes, 153 infiltration tests and 250 in situ vane tests from 32 different sites in the Central Denmark Region were utilised to find quantitative and qualitative regional relationships between the resistivity and the lithology, the percolation rates and the undrained shear strength of cohesive soils at a depth of 1 meter below ground surface (m bgs). The qualitative tests enable a translation from resistivity to lithology as well as a translation from lithology to percolation rates with moderate to high certainty. The regional cut-off value separating sand-dominated deposits from clay-dominated deposits is found to be between 80 to 100 Ωm. The regional median percolation rates for sand and clay till is found to be 9.9 × 10−5 m/s and 2.6 × 10−5 m/s, respectively. The quantitative results derived from a simple linear regression analysis of resistivity and percolation rates and resistivity and undrained shear strength of cohesive soils are found to have a very weak relationship on a regional scale implying that in reality no meaningful relationships can be established. The regional qualitative results have been tested on a case study area. The case study illustrates that site-specific investigations are necessary when using geophysical mapping to directly estimate lithology, percolation rates and undrained shear strength of cohesive soils due to the differences in soil properties and the surrounding environment from site to site. This study further illustrates that geophysical mapping in combination with lithological descriptions, infiltration tests and groundwater levels yield the basis for the construction of detailed planning maps showing the most suitable locations for infiltration. These maps provide valuable information for city planners about which areas may preclude the establishment of infiltration-based SUDS.


2010 ◽  
Vol 175 (1-4) ◽  
pp. 589-600 ◽  
Author(s):  
Mauro Tretiach ◽  
Fabio Candotto Carniel ◽  
Stefano Loppi ◽  
Alberto Carniel ◽  
Adriano Bortolussi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document