undrained shear
Recently Published Documents


TOTAL DOCUMENTS

716
(FIVE YEARS 168)

H-INDEX

42
(FIVE YEARS 5)

2022 ◽  
Vol 28 (3) ◽  
pp. 241-252
Author(s):  
Sugeng Krisnanto

Abstract Two theoretical equations are developed to calculate the ratio of undrained shear strength to the vertical effective stress (the ratio of (su/sv’)) for normally consolidated saturated cohesive soils. The effective stress approach is used as the basis in the development of the theoretical equations. The theoretical equations are developed by relating the total and the effective stress paths. The development of the excess pore-water pressure is quantified using Skempton A and B pore-water pressure parameters. The theoretical equations are developed for two initial stress conditions: (i) an initially hydrostatic condition and (ii) an initially Ko (non-hydrostatic) condition. The performance of the theoretical equations of this study is compared with field and laboratory measurement data obtained from the literature. The close results between the theoretical equations and the measurements show that the theoretical equations of this study can compute the ratio of (su/sv’) well. Using the theoretical equations, the values of the ratio of (su/sv’) commonly used in engineering practice can be explained from the soil mechanics framework. Keywords: Saturated cohesive soils, c/p ratio, normally consolidated soil, undrained shear strength, effective shear strength, theoretical equation. Abstrak Dua persamaan teoritis dikembangkan untuk menghitung rasio kuat geser tak teralirkan dengan tegangan efektif vertikal (rasio (su/sv’)) untuk tanah kohesif jenuh terkonsolidasi normal. Pendekatan tegangan efektif dijadikan dasar dalam pengembangan kedua persamaan teoretis ini. Persamaan teoretis tersebut dikembangkan menghubungkan lintasan tegangan total dan lintasan tegangan efektif. Kenaikan tekanan air pori ekses dikuantifikasi menggunakan parameter tekanan air pori A dan B dari Skempton. Persamaan teoretis dikembangkan untuk dua kondisi tegangan awal: (i) tegangan awal hidrostatik dan (ii) teganan awal Ko (non hidrostatik). Kinerja kedua persamaan teoretis tersebut dibandingkan terhadap data pengukuran lapangan dan pengujian laboratorium yang diperoleh dari literatur. Persamaan teoretis dari studi ini memiliki kinerja yang baik dalam memperhitungan rasio (su/sv’) yang ditunjukkan dengan dekatnya hasil perhitungan menggunakan persamaan teoretis dan hasil pengukuran lapangan maupun pengujan laboratorium. Dengan persamaan teoretis tersebut, nilai rasio (su/sv’) yang biasa digunakan dalam rekayasa praktis bisa dijelaskan secara mekanika tanah. Kata-kata Kunci: Tanah kohesif jenuh, rasio c/p, tanah terkonsolidasi normal, kuat geser tak teralirkan, kuat geser efektif, persamaan teoretis.  


Author(s):  
Di Wang ◽  
Dongqiang Xu ◽  
Eileen McCarthy ◽  
Romain Rodrigues de Amorim ◽  
Zili Li

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mafalda Lopes Laranjo ◽  
Manuel Matos Fernandes

Abstract Undrained shear strength plays a fundamental role on the behaviour of clays. In overconsolidated clays, this parameter is largely influenced by test conditions, namely consolidation stress. “Prazeres Clay” is a Miocene overconsolidated formation, that can be found in a significant part of Lisbon area. Over the last decades a number of very relevant constructions have generated a large database for physical and mechanical properties of Miocene clays. Included in a broader study at the Faculty of Engineering of Porto University about Miocene clay’s physical and mechanical properties, existing data was gathered, treated and critically analysed, in order to establish a useful framework for geotechnical designers. This paper presents the results obtained for undrained shear strength, obtained from triaxial tests and Ménard Pressuremeter tests. It addresses the main difficulties associated with test’s interpretation and presents a discussion on how theoretical values relate to experimental ones. The paper proposes a range of variation for Prazeres Clay’ undrained shear strength based on a significant amount of test results, that is considered to be useful for geotechnical design. Article Highlights Undrained Shear strength is a relevant parameter for clays, and is usually derived from triaxial tests For overconsolidated clays, this parameter is highly dependent on preconsolidation stress, and on its relation to in situ stress. Based on a significant set of data, the paper presents a simple methodology for estimating this parameter


Géotechnique ◽  
2021 ◽  
pp. 1-44
Author(s):  
Zhichao Shen ◽  
Qiujing Pan ◽  
Siau Chen Chian ◽  
Susan Gourvenec ◽  
Yinghui Tian

This paper investigates probabilistic failure envelopes of strip foundations on spatially variable soils with profiles of undrained shear strength su linearly increasing with depth using the lower bound random finite element limit analysis. The spatially variable su is characterised by a non-stationary random field with linearly increasing mean and constant coefficient of variation (COV) with depth. The deterministic uniaxial capacities and failure envelopes are firstly derived to validate numerical models and provide a reference for the subsequent probabilistic analysis. Results indicate that the random field parameters COVsu (COV of su) and Δ (dimensionless autocorrelation distance) have a considerable effect on the probabilistic normalised uniaxial capacities which alters the size of probabilistic failure envelopes. However, COVsu and Δ have an insignificant effect on the shape of probabilistic failure envelopes is observed in the V-H, V-M and H-M loading spaces, such that failure envelopes for different soil variabilities can be simply scaled by the uniaxial capacities. In contrast to COVsu and Δ, the soil strength heterogeneity index κ = μkB/μsu0 has the lowest effect on the probabilistic normalised uniaxial capacity factors but the highest effect on the shape of the probabilistic failure envelopes. A series of expressions are proposed to describe the shape of deterministic and probabilistic failure envelopes for strip foundations under combined vertical, horizontal and moment (V-H-M) loading.


Sign in / Sign up

Export Citation Format

Share Document