The equivalence of two phylogenetic biodiversity measures: the Shapley value and Fair Proportion index

2012 ◽  
Vol 67 (5) ◽  
pp. 1163-1170 ◽  
Author(s):  
Klaas Hartmann
2018 ◽  
Author(s):  
Tomás M. Coronado ◽  
Gabriel Riera ◽  
Francesc Rosselló

AbstractThe Fair Proportion of a species in a phylogenetic tree is a very simple measure that has been used to assess its value relative to the overall phylogenetic diversity represented by the tree. It has recently been proved by Fuchs and Jin to be equal to the Shapley Value of the coallitional game that sends each subset of species to its rooted Phylogenetic Diversity in the tree. We prove in this paper that this result extends to the natural translations of the Fair Proportion and the rooted Phylogenetic Diversity to rooted phylogenetic networks. We also generalize to rooted phylogenetic networks the expression for the Shapley Value of the unrooted Phylogenetic Diversity game on a phylogenetic tree established by Haake, Kashiwada and Su.


2021 ◽  
Vol 50 (1) ◽  
pp. 78-85
Author(s):  
Ester Livshits ◽  
Leopoldo Bertossi ◽  
Benny Kimelfeld ◽  
Moshe Sebag

Database tuples can be seen as players in the game of jointly realizing the answer to a query. Some tuples may contribute more than others to the outcome, which can be a binary value in the case of a Boolean query, a number for a numerical aggregate query, and so on. To quantify the contributions of tuples, we use the Shapley value that was introduced in cooperative game theory and has found applications in a plethora of domains. Specifically, the Shapley value of an individual tuple quantifies its contribution to the query. We investigate the applicability of the Shapley value in this setting, as well as the computational aspects of its calculation in terms of complexity, algorithms, and approximation.


2016 ◽  
Vol 80 ◽  
pp. 21-24 ◽  
Author(s):  
Koji Yokote ◽  
Yukihiko Funaki ◽  
Yoshio Kamijo

Author(s):  
SILVIU GUIASU

A solution of n-person games is proposed, based on the minimum deviation from statistical equilibrium subject to the constraints imposed by the group rationality and individual rationality. The new solution is compared with the Shapley value and von Neumann-Morgenstern's core of the game in the context of the 15-person game of passing and defeating resolutions in the UN Security Council involving five permanent members and ten nonpermanent members. A coalition classification, based on the minimum ramification cost induced by the characteristic function of the game, is also presented.


2012 ◽  
Vol 7 (2) ◽  
pp. 169-180 ◽  
Author(s):  
Victor Ginsburgh ◽  
Israël Zang

AbstractWe suggest a new game-theory-based ranking method for wines, in which the Shapley Value of each wine is computed, and wines are ranked according to their Shapley Values. Judges should find it simpler to use, since they are not required to rank order or grade all the wines, but merely to choose the group of those that they find meritorious. Our ranking method is based on the set of reasonable axioms that determine the Shapley Value as the unique solution of an underlying cooperative game. Unlike in the general case, where computing the Shapley Value could be complex, here the Shapley Value and hence the final ranking, are straightforward to compute. (JEL Classification: C71, D71, D78)


Sign in / Sign up

Export Citation Format

Share Document