Greens functions of 2-dimensional Yang-Mills theories on nonorientable surfaces

1997 ◽  
Vol 76 (4) ◽  
pp. 729-731 ◽  
Author(s):  
M. Alimohammadi ◽  
M. Khorrami
1995 ◽  
Vol 10 (14) ◽  
pp. 2097-2122 ◽  
Author(s):  
STEPHEN G. NACULICH ◽  
HAROLD A. RIGGS ◽  
HOWARD J. SCHNITZER

We demonstrate that the large N expansion of Wilson loop expectation values in SO (N) and Sp (N) Yang-Mills theory on orientable and nonorientable surfaces has a natural description as a weighted sum over covers of the given surface. The sum takes the form of the perturbative expansion of an open string theory. The derivation makes contact with the classification of branched covers by Gabai and Kazez. Comparison with the analogous results for the chiral sectors of QCD 2 is instructive for both cases.


2008 ◽  
Vol 16 (3) ◽  
pp. 617-679 ◽  
Author(s):  
Nan-Kuo Ho ◽  
Chiu-Chu Melissa Liu

1997 ◽  
Vol 12 (30) ◽  
pp. 2265-2270 ◽  
Author(s):  
M. Khorrami ◽  
M. Alimohammadi

Using the path integral method, we calculate the partition function and the generating functional (of the field strengths) of the generalized 2-D Yang–Mills theories in the Schwinger–Fock gauge. Our calculation is done for arbitrary 2-D orientable, and also nonorientable surfaces.


2009 ◽  
Vol 17 (5) ◽  
pp. 903-953 ◽  
Author(s):  
Nan-Kuo Ho ◽  
Chiu-Chu Melissa Liu ◽  
Daniel Ramras

2009 ◽  
Vol 202 (948) ◽  
pp. 0-0
Author(s):  
Nan-Kuo Ho ◽  
Chiu-Chu Liu

1982 ◽  
Vol 43 (C3) ◽  
pp. C3-326-C3-327
Author(s):  
K. S. Stelle
Keyword(s):  

1992 ◽  
Vol 162 (2) ◽  
pp. 161 ◽  
Author(s):  
B.P. Kosyakov
Keyword(s):  

2019 ◽  
Vol 306 (1) ◽  
pp. 157-177 ◽  
Author(s):  
N. G. Marchuk
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document