open string
Recently Published Documents


TOTAL DOCUMENTS

592
(FIVE YEARS 78)

H-INDEX

49
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Fabrizio Tamburini ◽  
Ignazio Licata

Abstract The Riemann Hypothesis states that the Riemann zeta function ζ(z) admits a set of “non-trivial” zeros that are complex numbers supposed to have real part 1/2. Their distribution on the complex plane is thought to be the key to determine the number of prime numbers before a given number. Hilbert and Pólya suggested that the Riemann Hypothesis could be solved through the mathematical tools of physics, finding a suitable Hermitian or unitary operator that describe classical or quantum systems, whose eigenvalues distribute like the zeros of ζ(z). A different approach is that of finding a correspondence between the distribution of the ζ(z) zeros and the poles of the scattering matrix S of a physical system. Our contribution is articulated in two parts: in the first we apply the infinite-components Majorana equation in a Rindler spacetime and compare the results with those obtained with a Dirac particle following the Hilbert-Pólya approach showing that the Majorana solution has a behavior similar to that of massless Dirac particles and finding a relationship between the zeros of zeta end the energy states. Then, we focus on the S-matrix approach describing the bosonic open string scattering for tachyonic states with the Majorana equation. Here we find that, thanks to the relationship between the angular momentum and energy/mass eigenvalues of the Majorana solution, one can explain the still unclear point for which the poles and zeros of the S-matrix of an ideal system that can satisfy the Riemann Hypothesis, exist always in pairs and are related via complex conjugation. As claimed in the literature, if this occurs and the claim is correct, then the Riemann Hypothesis could be in principle satisfied, tracing a route to a proof.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Dieter Lüst ◽  
Chrysoula Markou ◽  
Pouria Mazloumi ◽  
Stephan Stieberger

Abstract The origin of the graviton from string theory is well understood: it corresponds to a massless state in closed string spectra, whose low-energy effective action, as extracted from string scattering amplitudes, is that of Einstein-Hilbert. In this work, we explore the possibility of such a string-theoretic emergence of ghost-free bimetric theory, a recently proposed theory that involves two dynamical metrics, that around particular backgrounds propagates the graviton and a massive spin-2 field, which has been argued to be a viable dark matter candidate. By choosing to identify the latter with a massive spin-2 state of open string spectra, we compute tree-level three-point string scattering amplitudes that describe interactions of the massive spin-2 with itself and with the graviton. With the mass of the external legs depending on the string scale, we discover that extracting the corresponding low-energy effective actions in four spacetime dimensions is a subtle but consistent process and proceed to appropriately compare them with bimetric theory. Our findings consist in establishing that string and bimetric theory provide to lowest order the same set of two-derivative terms describing the interactions of the massive spin-2 with itself and with the graviton, albeit up to numerical coefficient discrepancies, a fact that we analyze and interpret. We conclude with a mention of future investigations.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Karim Benakli ◽  
Nathan Berkovits ◽  
Cassiano A. Daniel ◽  
Matheus Lize

Abstract Constructing a consistent four-dimensional Lagrangian for charged massive higher-spin fields propagating in an electromagnetic background is an open problem. In 1989, Argyres and Nappi used bosonic open string field theory to construct a Lagrangian for charged massive spin-2 fields in a constant electromagnetic background. In this paper, we use the four-dimensional hybrid formalism for open superstring field theory to construct a supersymmetric Lagrangian for charged massive spin-2 and spin-3/2 fields in a constant electromagnetic background. The hybrid formalism has the advantage over the RNS formalism of manifest $$ \mathcal{N} $$ N = 1 d=4 spacetime supersymmetry so that the spin-2 and spin-3/2 fields are combined into a single superfield and there is no need for picture-changing or spin fields.


Author(s):  
Thibaut Coudarchet ◽  
Hervé Partouche

In this paper, we compute at one loop the two-point functions of massless scalars in the Neumann–Dirichlet open-string sector of the type IIB orientifold compactified on [Formula: see text], when [Formula: see text] supersymmetry is spontaneously broken. This is done by evaluating correlation functions of “boundary-changing vertex operators” which are analogous to correlators of twist fields for closed strings. We use our results to compute the mass developed at one loop by the moduli fields arising in the Neumann–Dirichlet sector.


Author(s):  
Diego H Correa ◽  
Victor I Giraldo-Rivera ◽  
Martín Lagares

Abstract We study supersymmetric open strings in type IIB $AdS_3 \times S^3 \times S^3 \times S^1$ with mixed R-R and NS-NS fields. We focus on strings ending along a straight line at the boundary of $AdS_3$, which can be interpreted as line operators in a dual CFT$_2$. We study both classical configurations and quadratic fluctuations around them. We find that strings sitting at a fixed point in $S^3 \times S^3 \times S^1$, i.e. satisfying Dirichlet boundary conditions, are 1/2 BPS. We also show that strings sitting at different points of certain submanifolds of $S^3 \times S^3 \times S^1$ can still share some fraction of the supersymmetry. This allows to define supersymmetric smeared configurations by the superposition of them, which range from 1/2 BPS to 1/8 BPS. In addition to the smeared configurations, there are as well 1/4 BPS and 1/8 BPS strings satisfying Neumann boundary conditions. All these supersymmetric strings are shown to be connected by a network of interpolating BPS boundary conditions. Our study reveals the existence of a rich moduli of supersymmetric open string configurations, for which the appearance of massless fermionic fields in the spectrum of quadratic fluctuations is crucial.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Ashoke Sen

Abstract D-instanton amplitudes suffer from various infrared divergences associated with tachyonic or massless open string modes, leading to ambiguous contribution to string amplitudes. It has been shown previously that string field theory can resolve these ambiguities and lead to unambiguous expressions for D-instanton contributions to string amplitudes, except for an overall normalization constant that remains undetermined. In this paper we show that string field theory, together with the world-sheet description of the amplitudes, can also fix this normalization constant. We apply our analysis to the special case of two dimensional string theory, obtaining results in agreement with the matrix model results obtained by Balthazar, Rodriguez and Yin.


2021 ◽  
Vol 822 ◽  
pp. 136664
Author(s):  
Shigenori Seki ◽  
Tomohiko Takahashi

2021 ◽  
Vol 36 (31) ◽  
Author(s):  
A. Belhaj ◽  
Y. Hassouni ◽  
M. Oualaid ◽  
M. B. Sedra

We investigate cosmological inflation models from Randall–Sundrum brane physics. In particular, we examine certain cosmological parameters for two potentials, being a logarithmical one and open string tachyonic inflation (OSTI). In the presence of the brane tension, we give scalar field constraints providing inflationary models matching with Planck results. Then, we discuss the reheating phase of such models. Precisely, the reheating temperature depends on the potential forms. Among others, we find that OSTI provides small temperatures, supported by GUT scales.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Andrés Collinucci ◽  
Mario De Marco ◽  
Andrea Sangiovanni ◽  
Roberto Valandro

Abstract We study the Higgs branches of five-dimensional $$ \mathcal{N} $$ N = 1 rank-zero theories obtained from M-theory on two classes non-toric non-compact Calabi-Yau threefolds: Reid’s pagodas, and Laufer’s examples. Our approach consists in reducing to IIA with D6-branes and O6-planes, and computing the open-string spectra giving rise to hypermultiplets. Starting with the seven-dimensional worldvolume theories, we switch on T-brane backgrounds to give rise to bound states with angles. We observe that the resulting partially Higgsed 5d theories have discrete gauge groups, from which we readily deduce the geometry of the Higgs branches as orbifolds of quaternionic varieties.


Sign in / Sign up

Export Citation Format

Share Document