Lattice computation of the transport coefficient kappa in pure Yang-Mills theory

2014 ◽  
Author(s):  
Christian Schäfer ◽  
Owe Philipsen
1982 ◽  
Vol 43 (C3) ◽  
pp. C3-326-C3-327
Author(s):  
K. S. Stelle
Keyword(s):  

1992 ◽  
Vol 162 (2) ◽  
pp. 161 ◽  
Author(s):  
B.P. Kosyakov
Keyword(s):  

2019 ◽  
Vol 306 (1) ◽  
pp. 157-177 ◽  
Author(s):  
N. G. Marchuk
Keyword(s):  

Author(s):  
Laurent Baulieu ◽  
John Iliopoulos ◽  
Roland Sénéor

A geometrical derivation of Abelian and non- Abelian gauge theories. The Faddeev–Popov quantisation. BRST invariance and ghost fields. General discussion of BRST symmetry. Application to Yang–Mills theories and general relativity. A brief history of gauge theories.


1995 ◽  
Vol 52 (4) ◽  
pp. 2402-2411 ◽  
Author(s):  
C. R. Hu ◽  
S. G. Matinyan ◽  
B. Müller ◽  
A. Trayanov ◽  
T. M. Gould ◽  
...  

2007 ◽  
Vol 783 (3) ◽  
pp. 227-237 ◽  
Author(s):  
Sudarshan Ananth ◽  
Stefano Kovacs ◽  
Hidehiko Shimada
Keyword(s):  

1992 ◽  
Vol 07 (23) ◽  
pp. 2077-2085 ◽  
Author(s):  
A. D. POPOV

The anti-self-duality equations for gauge fields in d = 4 and a generalization of these equations to dimension d = 4n are considered. For gauge fields with values in an arbitrary semisimple Lie algebra [Formula: see text] we introduce the ansatz which reduces the anti-self-duality equations in the Euclidean space ℝ4n to a system of equations breaking up into the well known Nahm's equations and some linear equations for scalar field φ.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Changrim Ahn ◽  
Matthias Staudacher

Abstract We refine the notion of eclectic spin chains introduced in [1] by including a maximal number of deformation parameters. These models are integrable, nearest-neighbor n-state spin chains with exceedingly simple non-hermitian Hamiltonians. They turn out to be non-diagonalizable in the multiparticle sector (n > 2), where their “spectrum” consists of an intricate collection of Jordan blocks of arbitrary size and multiplicity. We show how and why the quantum inverse scattering method, sought to be universally applicable to integrable nearest-neighbor spin chains, essentially fails to reproduce the details of this spectrum. We then provide, for n=3, detailed evidence by a variety of analytical and numerical techniques that the spectrum is not “random”, but instead shows surprisingly subtle and regular patterns that moreover exhibit universality for generic deformation parameters. We also introduce a new model, the hypereclectic spin chain, where all parameters are zero except for one. Despite the extreme simplicity of its Hamiltonian, it still seems to reproduce the above “generic” spectra as a subset of an even more intricate overall spectrum. Our models are inspired by parts of the one-loop dilatation operator of a strongly twisted, double-scaled deformation of $$ \mathcal{N} $$ N = 4 Super Yang-Mills Theory.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Yoonbai Kim ◽  
O-Kab Kwon ◽  
D. D. Tolla

Abstract We construct the 4-dimensional $$ \mathcal{N}=\frac{1}{2} $$ N = 1 2 and $$ \mathcal{N} $$ N = 1 inhomogeneously mass-deformed super Yang-Mills theories from the $$ \mathcal{N} $$ N = 1* and $$ \mathcal{N} $$ N = 2* theories, respectively, and analyse their supersymmetric vacua. The inhomogeneity is attributed to the dependence of background fluxes in the type IIB supergravity on a single spatial coordinate. This gives rise to inhomogeneous mass functions in the $$ \mathcal{N} $$ N = 4 super Yang-Mills theory which describes the dynamics of D3-branes. The Killing spinor equations for those inhomogeneous theories lead to the supersymmetric vacuum equation and a boundary condition. We investigate two types of solutions in the $$ \mathcal{N}=\frac{1}{2} $$ N = 1 2 theory, corresponding to the cases of asymptotically constant mass functions and periodic mass functions. For the former case, the boundary condition gives a relation between the parameters of two possibly distinct vacua at the asymptotic boundaries. Brane interpretations for corresponding vacuum solutions in type IIB supergravity are also discussed. For the latter case, we obtain explicit forms of the periodic vacuum solutions.


Sign in / Sign up

Export Citation Format

Share Document