Strain energy method to determine static recrystallization volume fraction of microalloyed steel

2020 ◽  
Vol 126 (12) ◽  
Author(s):  
Baochun Zhao ◽  
Lei Huang ◽  
Huixia Ma ◽  
Wenjie Zhen
1988 ◽  
Vol 15 (3) ◽  
pp. 149-156 ◽  
Author(s):  
R. A. Cavina ◽  
N. E. Waters

The angular stiffness of a multiple looped span, subject to rotation about a vertical axis (torsion) and also to rotation about a horizontal or radial axis (mesio-distal tilt), have been derived using the complementary (strain) energy method. Experimental measurements on enlarged models were in good agreement with the values calculated from the theoretical relationships obtained. The variations in angular stiffness resulting from changes in the loop height, width, and position of clinical sized loops are discussed.


Author(s):  
Hoi Wai Shih ◽  
David Thambiratnam ◽  
Tommy Chan

Assessing the structural health state of urban infrastructure is crucial in terms of infrastructure sustainability. This chapter uses dynamic computer simulation techniques to apply a procedure using vibration-based methods for damage assessment in multiple-girder composite bridges. In addition to changes in natural frequencies, this multi-criteria procedure incorporates two methods, namely, the modal flexibility and the modal strain energy method. Using the numerically simulated modal data obtained through finite element analysis software, algorithms based on modal flexibility and modal strain energy change, before and after damage, are obtained and used as the indices for the assessment of structural health state. The feasibility and capability of the approach is demonstrated through numerical studies of a proposed structure with six damage scenarios. It is concluded that the modal strain energy method is capable of application to multiple-girder composite bridges, as evidenced through the example treated in this chapter.


2015 ◽  
Vol 48 (6) ◽  
pp. 2421-2433 ◽  
Author(s):  
Mohammad Rezaei ◽  
Mohammad Farouq Hossaini ◽  
Abbas Majdi

Sign in / Sign up

Export Citation Format

Share Document