Experimental investigation of extreme skin friction events in polymer drag-reduced turbulent boundary layers

2022 ◽  
Vol 63 (1) ◽  
Author(s):  
Y. Shah ◽  
S. Ghaemi ◽  
S. Yarusevych
Author(s):  
Katherine Newhall ◽  
Brian Brzek ◽  
Raul Bayoan Cal ◽  
Gunnar Johansson ◽  
Luciano Castillo

1983 ◽  
Vol 27 (03) ◽  
pp. 147-157 ◽  
Author(s):  
A. J. Smits ◽  
N. Matheson ◽  
P. N. Joubert

This paper reports the results of an extensive experimental investigation into the mean flow properties of turbulent boundary layers with momentum-thickness Reynolds numbers less than 3000. Zero pressure gradient and favorable pressure gradients were studied. The velocity profiles displayed a logarithmic region even at very low Reynolds numbers (as low as Rθ = 261). The results were independent of the leading-edge shape, and the pin-type turbulent stimulators performed well. It was found that the shape and Clauser parameters were a little higher than the correlation proposed by Coles [10], and the skin friction coefficient was a little lower. The skin friction coefficient behavior could be fitted well by a simple power-law relationship in both zero and favorable pressure gradients.


Sign in / Sign up

Export Citation Format

Share Document