International Shipbuilding Progress
Latest Publications


TOTAL DOCUMENTS

1136
(FIVE YEARS 38)

H-INDEX

21
(FIVE YEARS 2)

Published By Ios Press

1566-2829, 0020-868x

2022 ◽  
pp. 1-1
Author(s):  
Peter Wellens

2021 ◽  
pp. 1-18
Author(s):  
Alec Bagué ◽  
Joris Degroote ◽  
Toon Demeester ◽  
Evert Lataire

In this paper an open-source implementation of the vortex-lattice method to perform a dynamic stability analysis for hydrofoil crafts is discussed. The difference with existing vortex-lattice codes is the addition of a free-surface boundary condition which is needed to analyse surface piercing foils. This code, called Typhoon, can be used to perform a dynamic stability analysis (DSA) on hydrofoil vessels. The goal of this code is to have an easy-to-use and cheap alternative to compare different designs in early design stages. This paper gives a brief background to all the concepts used, followed by a short theoretical explanation of the vortex-lattice method. The second part of this paper focuses on a practical example of how this code can be used on an example.


2021 ◽  
pp. 1-24
Author(s):  
Guan Guan ◽  
Hongling Liao ◽  
Qu Yang

In order to effectively improve the assembly efficiency for hull blocks, an assembly simulation analysis method considering engineering constraints is proposed in this paper, and an integrated system of shipbuilding accuracy analysis and assembly analysis considering multi-constraints is developed. The method is divided into pre-matching model and fine matching model. In the pre-matching model, an Improved Coherent Point Drift (ICPD) algorithm is used to obtain more accurate initial matching values. The fine matching model firstly uses the Analytic Hierarchy Process (AHP) algorithm to automatically obtain the constrained weights, then the weights vector is used to add the assembly constraints for hull blocks such as straightness, hard point constraints etc. into the multi-objective optimization function. By solving the function, the optimum positioning location and the most reasonable adjustment scheme are obtained. This method shortens the occupancy time of the equipment used to build the hull, reduces the workload of the staff, and improves the efficiency and quality of shipbuilding. The integrated system adds engineering constraints analysis module and the function of automatically finding and eliminating error measurement points. Through the verification of the examples, the integrated system realizes the automation and intellectualization of the assembly for hull blocks.


2021 ◽  
pp. 1-24
Author(s):  
Bogdan Branowski ◽  
Marek Zabłocki ◽  
Jarosław Gabryelski ◽  
Andrzej Walczak ◽  
Przemysław Kurczewski

Introduction: In connection with the design of a seaworthy yacht for persons with disabilities, authors conduct a risk analysis and consider the safety aspects arising from these risks. In the context of tourism and recreation for people with disabilities, this represents a new issue in the literature. Aim: The aim of the analysis was a multi-aspect evaluation of the hazards that occur when sailors with disabilities carry out typical activities on a yacht. The recommendations arising from the conducted research were used when designing the structure of a staysail schooner intended to be sailed by people with disabilities. Methods: Two methods of risk analysis were adopted. A preliminary hazard analysis (PHA) was carried out with the purpose of identifying and evaluating the possibility of people with various types of disabilities carrying out activities on a yacht. A process hazard analysis (PRHA) was based on a four-degree structure of functions with 31 component operations, relating to both sailing and living on a yacht. This methodology was used by the authors in sailing for the first time when the yacht’s equipment was designed for persons with disabilities. Results: The evaluation covered the adaptation of the yacht for sailing by people with disabilities and considered the various functions that would need to be carried out by these people. A PRHA matrix was created, consisting of 1,116 fields. Authors found that safe execution of many of the relevant functions by people with various types of disabilities was indicated. Conclusions: Based on the results of the PRHA, a set of new guidelines was created for permanent and temporary adaptations of a yacht in the context of the degrees and causes of disabilities.


2021 ◽  
pp. 1-32
Author(s):  
Ali Ebrahimi ◽  
Per Olaf Brett ◽  
Stein Ove Erikstad ◽  
Bjørn Egil Asbjørnslett ◽  
Jose Jorge Garcia Agis

Handling complexity in conceptual ship design processes requires a thorough understanding of complexity aspects in general. More than 100 scientific papers on the subject published since 1962 are, therefore, reviewed and discussed in this paper. The paper expands the understanding of complexity theory by reviewing the literature in the engineering domain. Different definitions of complexity, characteristics of complex systems, aspects of complexity in design, complexity sources, and its drivers are explored and discussed in detail. Furthermore, the findings are arranged into relevant complexity factors in ship design. Related complexity factors in ship design, are also discussed by use of examples from everyday ship design practices. This study is a theoretical elaboration to shed light on the current practice and future research direction in handling complexity in conceptual ship design processes to improve competitiveness.


2021 ◽  
pp. 1-22
Author(s):  
Keun Woo Shin ◽  
Poul Andersen

It is important to make predictions of cavitation-induced erosion risk on ship propellers in the design phase. Since a cavitation tunnel test on a propeller model coated by soft paint, that is, a standard experimental method for evaluating erosion risk, is costly and time-consuming, numerical methods are necessary for erosion risk predictions. DES is made for cavitating flows around the propeller with a numerically modelled hull wake at the inflow. After achieving a converged solution, an erosion risk index is computed in each cell connecting to the blade surface and accumulated over a propeller rotation. Cavitation simulations are made for two propellers designed for a single-screw ship, of which one showed an erosion indication and the other showed no indication after cavitation tunnel tests with soft paint coating. Three index formulations are compared with the experiment result. The high value region of Index 1 based on the potential energy density of collapsing bubbles corresponds better with the eroded spot indicated by partial and complete paint removals in the experiment than those of the other indices. The maximum value of Index 1 for the non-eroded propeller is lower by more than an order of magnitude than that for the eroded one, whereas the maximum values of the other indices are of the same order of magnitude for both propellers. The validation of Index 1 is in agreement with the criterion that the maximum index needs to be below 1,000 J/m3 for erosion-free propeller designs. The design evolution based on the erosion risk index and propulsive efficiency from CFD shows that it can be a practical tool for a quantitative evaluation of blade surface erosion risk in the propeller design phase.


2021 ◽  
pp. 1-2
Author(s):  
Peter Wellens

2021 ◽  
pp. 1-29
Author(s):  
Christian Lena ◽  
Matteo Bonci ◽  
Frans van Walree

Ships can experience serious difficulties in keeping a straight course when sailing in stern-quartering seas. Design modifications like the addition of stern passive fins, or the modification of active control surfaces, are common solutions to improve the ship course-keeping. However, the success of such design modifications depends on the delicate balance between the excitation forces induced by the waves on the appended hull, the stabilization forces provided by the lifting surfaces as appended fins, and the steering forces provided by the control surfaces. This research investigates which of these aspects of a ship design play a concrete role in improving the ship course-keeping in waves. The study is carried out with the intention of looking at the different behaviors of the ship originating from different stern appendages configurations. Three modifications of stern appendages on three different ship hulls were investigated in various mild-to-rough sea conditions. The behavior of the vessels were simulated using a time domain, boundary element potential method, with the addition of semi-empirical formulations for the modelling of the stern lifting surfaces. The simulations were carried out in long crested irregular waves at three different direction, using the JONSWAP spectrum. The results showed that although larger stern appendages improve the directional stability of relatively large and slow vessels, in most cases they worsen their course-keeping ability, increasing the yaw motions. For smaller and faster vessels instead, passive and active fins tend to improve the course-keeping, because at high speed the lift provided by the appendages stabilizes the vessel. This effect is compensated by the wave excitation force at lower speed. Similarly to yaw, the roll motions increases with larger stern appendages.


2021 ◽  
pp. 1-26
Author(s):  
Martin van der Eijk ◽  
Peter Wellens

This paper presents the comparison of a self-conducted towing tank experiment with the simulation results of a calibrated state-of-the-art strip-theory method and a first-principles numerical method. The experiment concerns a Rigid Inflatable Boat (RIB) in moderate-to-high irregular waves. These waves result in bow emersion events of the RIB. Bow re-entry induces vertical accelerations which, in reality, can lead to severe injuries and structural damage. State-of-the-art methods for predicting the vertical acceleration levels are based on assumptions, require calibration and are often limited in application range. We demonstrate how the vertical acceleration as a function of time is found from a 3D numerical method based on the Navier–Stokes equations, employing the Volume of Fluid (VoF) method for the free surface, without any further assumptions or limitations. 2D+t strip theory methods like Fastship are based on the mechanics of wedges falling in water. The 3D numerical method that is part of the software ComFLOW is compared to previous research on falling wedges in 2D to investigate the effect of air and to find suitable grid distances for the 3D simulation of the RIB. The 3D RIB simulations are compared to Fastship and the experiment. With respect to the experiment, the ComFLOW simulations show a slight underestimation of the levels of heave and pitch. The underestimation of Fastship is larger. The prediction of acceleration in ComFLOW is hardly different from the experiment and a significant improvement with respect to Fastship. ComFLOW is demonstrated to predict acceleration levels better than before, which creates opportunities for using it in seakeeping optimization and for the improvement of methods like Fastship. The properties of the RIB and the experiment are available as open data at Wellens (2020).


Sign in / Sign up

Export Citation Format

Share Document