Differential effects of sound level and temporal structure of calls on phonotaxis by female gray treefrogs, Hyla versicolor

2019 ◽  
Vol 205 (2) ◽  
pp. 223-238
Author(s):  
Kevin W. Christie ◽  
Johannes Schul ◽  
Albert S. Feng
Author(s):  
Jan Felcyn

Abstract Purpose Road traffic noise is the most common source of noise in modern cities. The noise indicators used to manage noise do not take into account its temporal structure. However, in cities the traffic flow varies during the day, peaking due to congestion and more fluent periods. In this research we sought to analyze how people (giving answers on a numerical ICBEN scale) perceive noise stimuli with the same LAeqT values but different time structures (more/less noise events, different amplitude envelopes). Methods 31 people with normal hearing took part in an experiment conducted in an anechoic chamber. Participants listened to 18 different noise recordings and rated each of them using the numerical ICBEN scale regarding noise annoyance. Results The results showed that only sound level was a statistically significant factor. However, based on people’s remarks about noise, we can also say that the more intermittent the noise is, the more negative feelings it evokes in people. Conclusions Time structure does not have a significant influence on people’s judgments about noise annoyance. However, people tend to have a preference for a steady noise rather than an intermittent one.


2012 ◽  
Vol 131 (5) ◽  
pp. 4188-4195 ◽  
Author(s):  
Mark A. Bee ◽  
Alejandro Vélez ◽  
James D. Forester

2013 ◽  
Vol 110 (7) ◽  
pp. 1672-1688 ◽  
Author(s):  
Bertrand Fontaine ◽  
Victor Benichoux ◽  
Philip X. Joris ◽  
Romain Brette

A challenge for sensory systems is to encode natural signals that vary in amplitude by orders of magnitude. The spike trains of neurons in the auditory system must represent the fine temporal structure of sounds despite a tremendous variation in sound level in natural environments. It has been shown in vitro that the transformation from dynamic signals into precise spike trains can be accurately captured by simple integrate-and-fire models. In this work, we show that the in vivo responses of cochlear nucleus bushy cells to sounds across a wide range of levels can be precisely predicted by deterministic integrate-and-fire models with adaptive spike threshold. Our model can predict both the spike timings and the firing rate in response to novel sounds, across a large input level range. A noisy version of the model accounts for the statistical structure of spike trains, including the reliability and temporal precision of responses. Spike threshold adaptation was critical to ensure that predictions remain accurate at different levels. These results confirm that simple integrate-and-fire models provide an accurate phenomenological account of spike train statistics and emphasize the functional relevance of spike threshold adaptation.


Herpetologica ◽  
2008 ◽  
Vol 64 (3) ◽  
pp. 259-269 ◽  
Author(s):  
Jarrett R. Johnson ◽  
Rachel D. Mahan ◽  
Raymond D. Semlitsch

2021 ◽  
pp. 1-11
Author(s):  
Gerlinde Höbel ◽  
Robb Kolodziej ◽  
Dustin Nelson ◽  
Christopher White

Abstract Information on how organisms allocate resources to reproduction is critical for understanding population dynamics. We collected clutch size (fecundity) and egg size data of female Eastern Gray Treefrogs, Hyla versicolor, and examined whether observed patterns of resource allocation are best explained by expectations arising from life history theory or by expected survival and growth benefits of breeding earlier. Female Hyla versicolor showed high between-individual variation in clutch and egg size. We did not observe maternal allocation trade-offs (size vs number; growth vs reproduction) predicted from life history theory, which we attribute to the large between-female variation in resource availability, and the low survival and post-maturity growth rate observed in the study population. Rather, clutches are larger at the beginning of the breeding season, and this variation in reproductive investment aligns with seasonal variation in ecological factors affecting offspring growth and survival.


Sign in / Sign up

Export Citation Format

Share Document