scholarly journals In-air hearing in Hawaiian monk seals: implications for understanding the auditory biology of Monachinae seals

Author(s):  
Brandi Ruscher ◽  
Jillian M. Sills ◽  
Beau P. Richter ◽  
Colleen Reichmuth

AbstractThe auditory biology of Monachinae seals is poorly understood. Limited audiometric data and certain anatomical features suggest that these seals may have reduced sensitivity to airborne sounds compared to related species. Here, we describe the in-air hearing abilities of a Hawaiian monk seal (Neomonachus schauinslandi) trained to participate in a psychophysical paradigm. We report absolute (unmasked) thresholds for narrowband signals measured in quiet conditions across the range of hearing and masked thresholds measured in the presence of octave-band noise at two frequencies. The behavioral audiogram indicates a functional hearing range from 0.1 to 33 kHz and poor sensitivity, with detection thresholds above 40 dB re 20 µPa. Critical ratio measurements are elevated compared to those of other seals. The apparently reduced terrestrial hearing ability of this individual—considered with available auditory data for a northern elephant seal (Mirounga angustirostris)—suggests that hearing in Monachinae seals differs from that of the highly sensitive Phocinae seals. Exploration of phylogenetic relationships and anatomical traits support this claim. This work advances understanding of the evolution of hearing in amphibious marine mammals and provides updated information that can be used for management and conservation of endangered Hawaiian monk seals.

2001 ◽  
Vol 281 (6) ◽  
pp. E1347-E1351 ◽  
Author(s):  
Rudy M. Ortiz ◽  
Dawn P. Noren ◽  
Beate Litz ◽  
C. Leo Ortiz

Many mammals seasonally reduce body fat due to inherent periods of fasting, which is associated with decreased leptin concentrations. However, no data exist on the correlation between fat mass (FM) and circulating leptin in marine mammals, which have evolved large fat stores as part of their adaptation to periods of prolonged fasting. Therefore, FM was estimated (by tritiated water dilution), and serum leptin and cortisol were measured in 40 northern elephant seal ( Mirounga angustirostris) pups early (<1 wk postweaning) and late (6–8 wk postweaning) during their natural, postweaning fast. Body mass (BM) and FM were reduced late; however, percent FM (early: 43.9 ± 0.5, late: 45.5 ± 0.5%) and leptin [early: 2.9 ± 0.1 ng/ml human equivalents (HE), late: 3.0 ± 0.1 ng/ml HE] did not change. Cortisol increased between early (9.2 ± 0.5 μg/dl) and late (16.3 ± 0.9 μg/dl) periods and was significantly and negatively correlated with BM ( r = 0.426; P < 0.0001) and FM ( r = 0.328; P = 0.003). FM and percent FM were not correlated ( P > 0.10) with leptin at either period. The present study suggests that these naturally obese mammals appear to possess a novel cascade for regulating body fat that includes cortisol. The lack of a correlation between leptin and FM may reflect the different functions of fat between terrestrial and marine mammals.


2017 ◽  
Vol 46 (5) ◽  
pp. 487-496
Author(s):  
H. Smodlaka ◽  
I. Galex ◽  
L. Palmer ◽  
J. A. Borovac ◽  
W. A. Khamas

2011 ◽  
Vol 129 (4) ◽  
pp. 2505-2505
Author(s):  
Marla M. Holt ◽  
Brandon L. Southall ◽  
Stephen J. Insley ◽  
Ronald J. Schusterman

2016 ◽  
Vol 47 (2) ◽  
pp. 438-446 ◽  
Author(s):  
Sarrah Kaye ◽  
Shawn Johnson ◽  
Robert D. Arnold ◽  
Ben Nie ◽  
Joshua T. Davis ◽  
...  

2012 ◽  
Vol 5 (1) ◽  
pp. 93-96 ◽  
Author(s):  
Simona Sanvito ◽  
Alejandro Dueñes Meza ◽  
Yolanda Schramm ◽  
Pedro Cruz Hernández ◽  
Yareli Esquer Garrigos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document