fat stores
Recently Published Documents


TOTAL DOCUMENTS

264
(FIVE YEARS 43)

H-INDEX

44
(FIVE YEARS 5)

2021 ◽  
Vol 5 (3) ◽  
pp. e202101140
Author(s):  
Matthieu Caron ◽  
Loïc Gely ◽  
Steven Garvis ◽  
Annie Adrait ◽  
Yohann Couté ◽  
...  

Changes in histone post-translational modifications are associated with aging through poorly defined mechanisms. Histone 3 lysine 4 (H3K4) methylation at promoters is deposited by SET1 family methyltransferases acting within conserved multiprotein complexes known as COMPASS. Previous work yielded conflicting results about the requirement for H3K4 methylation during aging. Here, we reassessed the role of SET1/COMPASS–dependent H3K4 methylation in Caenorhabditis elegans lifespan and fertility by generating set-2(syb2085) mutant animals that express a catalytically inactive form of SET-2, the C. elegans SET1 homolog. We show that set-2(syb2085) animals retain the ability to form COMPASS, but have a marked global loss of H3K4 di- and trimethylation (H3K4me2/3). Reduced H3K4 methylation was accompanied by loss of fertility, as expected; however, in contrast to earlier studies, set-2(syb2085) mutants displayed a significantly shortened, not extended, lifespan and had normal intestinal fat stores. Other commonly used set-2 mutants were also short-lived, as was a cfp-1 mutant that lacks the SET1/COMPASS chromatin-targeting component. These results challenge previously held views and establish that WT H3K4me2/3 levels are essential for normal lifespan in C. elegans.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Erich R Eberts ◽  
Christopher G Guglielmo ◽  
Kenneth C Welch

Many small endotherms use torpor to reduce metabolic rate and manage daily energy balance. However, the physiological 'rules' that govern torpor use are unclear. We tracked torpor use and body composition in ruby-throated hummingbirds (Archilochus colubris), a long-distance migrant, throughout the summer using respirometry and quantitative magnetic resonance. During the mid-summer, birds entered torpor at consistently low fat stores (~5% of body mass), and torpor duration was negatively related to evening fat load. Remarkably, this energy-emergency strategy was abandoned in the late summer when birds accumulated fat for migration. During the migration period, birds were more likely to enter torpor on nights when they had higher fat stores, and fat gain was positively correlated with the amount of torpor used. These findings demonstrate the versatility of torpor throughout the annual cycle and suggest a fundamental change in physiological feedback between adiposity and torpor during migration. Moreover, this study highlights the underappreciated importance of facultative heterothermy in migratory ecology.


2021 ◽  
Vol 11 (23) ◽  
pp. 11420
Author(s):  
Theresa Lehner ◽  
Dietmar Pum ◽  
Judith M. Rollinger ◽  
Benjamin Kirchweger

The small and transparent nematode Caenorhabditis elegans is increasingly employed for phenotypic in vivo chemical screens. The influence of compounds on worm body fat stores can be assayed with Nile red staining and imaging. Segmentation of C. elegans from fluorescence images is hereby a primary task. In this paper, we present an image-processing workflow that includes machine-learning-based segmentation of C. elegans directly from fluorescence images and quantifies their Nile red lipid-derived fluorescence. The segmentation is based on a J48 classifier using pixel entropies and is refined by size-thresholding. The accuracy of segmentation was >90% in our external validation. Binarization with a global threshold set to the brightness of the vehicle control group worms of each experiment allows a robust and reproducible quantification of worm fluorescence. The workflow is available as a script written in the macro language of imageJ, allowing the user additional manual control of classification results and custom specification settings for binarization. Our approach can be easily adapted to the requirements of other fluorescence image-based experiments with C. elegans.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yan-Yun Liu ◽  
Jingjing Jiang ◽  
Sujie Ke ◽  
Anna Milanesi ◽  
Kiyomi Abe ◽  
...  

AbstractThyroid hormone (TH) and thyroid hormone receptor (THR) regulate stem cell proliferation and differentiation during development, as well as during tissue renewal and repair in the adult. THR undergoes posttranslational modification by small ubiquitin-like modifier (SUMO). We generated the THRA (K283Q/K288R)−/− mouse model for in vivo studies and used human primary preadipocytes expressing the THRA sumoylation mutant (K283R/K288R) and isolated preadipocytes from mutant mice for in vitro studies. THRA mutant mice had reduced white adipose stores and reduced adipocyte cell diameter on a chow diet, compared to wild-type, and these differences were further enhanced after a high fat diet. Reduced preadipocyte proliferation in mutant mice, compared to wt, was shown after in vivo labeling of preadipocytes with EdU and in preadipocytes isolated from mice fat stores and studied in vitro. Mice with the desumoylated THRA had disruptions in cell cycle G1/S transition and this was associated with a reduction in the availability of cyclin D2 and cyclin-dependent kinase 2. The genes coding for cyclin D1, cyclin D2, cyclin-dependent kinase 2 and Culin3 are stimulated by cAMP Response Element Binding Protein (CREB) and contain CREB Response Elements (CREs) in their regulatory regions. We demonstrate, by Chromatin Immunoprecipitation (ChIP) assay, that in mice with the THRA K283Q/K288R mutant there was reduced CREB binding to the CRE. Mice with a THRA sumoylation mutant had reduced fat stores on chow and high fat diets and reduced adipocyte diameter.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260501
Author(s):  
Marianna Beghini ◽  
Theresia Wagner ◽  
Andreea Corina Luca ◽  
Matthäus Metz ◽  
Doris Kaltenecker ◽  
...  

The aim of this study was to investigate whether the lack of signal transducer and activator of transcription 5 (STAT5) in mature adipocytes of obese mice (Stat5Adipoq mice) improves glucose and lipid metabolism as previously observed in lean mice. Male Stat5Adipoq mice and their wild type (WT) littermates were fed high-fat diet (HFD). Effects of adipocyte STAT5 deficiency on adiposity as well as on glucose and lipid metabolism were determined under ad libitum feeding and after weight loss induced by calorie restriction. Compared to WT mice, obese Stat5Adipoq mice showed modestly accelerated weight gain and blunted depletion of fat stores under calorie restriction (reduction in % body fat after 3 weeks: WT, -9.3±1.1, vs Stat5Adipoq, -5.9±0.8, p = 0.04). No differences were observed between Stat5Adipoq and WT mice with regard to parameters of glucose and lipid metabolism including basal glycaemia, glucose tolerance, and plasma triglycerides. In conclusion, STAT5 deficiency in the adipocyte of HFD-fed obese mice was associated with increased fat accumulation. In contrast to previous findings in lean mice, however, lipid accumulation was not associated with any improvement in glucose and lipid metabolism. Our results do not support adipocyte STAT5 as a promising target for the treatment of obesity-associated metabolic derangements.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wenlei Bi ◽  
Rong Hou ◽  
Jacob R. Owens ◽  
James R. Spotila ◽  
Marc Valitutto ◽  
...  

AbstractKnowledge of energy expenditure informs conservation managers for long term plans for endangered species health and habitat suitability. We measured field metabolic rate (FMR) of free-roaming giant pandas in large enclosures in a nature reserve using the doubly labeled water method. Giant pandas in zoo like enclosures had a similar FMR (14,182 kJ/day) to giant pandas in larger field enclosures (13,280 kJ/day). In winter, giant pandas raised their metabolic rates when living at − 2.4 °C (36,108 kJ/day) indicating that they were below their thermal neutral zone. The lower critical temperature for thermoregulation was about 8.0 °C and the upper critical temperature was about 28 °C. Giant panda FMRs were somewhat lower than active metabolic rates of sloth bears, lower than FMRs of grizzly bears and polar bears and 69 and 81% of predicted values based on a regression of FMR versus body mass of mammals. That is probably due to their lower levels of activity since other bears actively forage for food over a larger home range and pandas often sit in a patch of bamboo and eat bamboo for hours at a time. The low metabolic rates of giant pandas in summer, their inability to acquire fat stores to hibernate in winter, and their ability to raise their metabolic rate to thermoregulate in winter are energetic adaptations related to eating a diet composed almost exclusively of bamboo. Differences in FMR of giant pandas between our study and previous studies (one similar and one lower) appear to be due to differences in activity of the giant pandas in those studies.


2021 ◽  
Vol 3 (11) ◽  
pp. 1445-1465
Author(s):  
Gernot F. Grabner ◽  
Hao Xie ◽  
Martina Schweiger ◽  
Rudolf Zechner

2021 ◽  
Vol 9 ◽  
Author(s):  
Audrey Le Pogam ◽  
Ryan S. O’Connor ◽  
Oliver P. Love ◽  
Justine Drolet ◽  
Lyette Régimbald ◽  
...  

Arctic breeding songbirds migrate early in the spring and can face winter environments requiring cold endurance throughout their journey. One such species, the snow bunting (Plectrophenax nivalis), is known for its significant thermogenic capacity. Empirical studies suggest that buntings can indeed maintain winter cold acclimatization into the migratory and breeding phenotypes when kept captive on their wintering grounds. This capacity could be advantageous not only for migrating in a cold environment, but also for facing unpredictable Arctic weather on arrival and during preparation for breeding. However, migration also typically leads to declines in the sizes of several body components linked to metabolic performance. As such, buntings could also experience some loss of cold endurance as they migrate. Here, we aimed to determine whether free-living snow buntings maintain a cold acclimatized phenotype during spring migration. Using a multi-year dataset, we compared body composition (body mass, fat stores, and pectoralis muscle thickness), oxygen carrying capacity (hematocrit) and metabolic performance (thermogenic capacity – Msum and maintenance energy expenditure – BMR) of birds captured on their wintering grounds (January–February, Rimouski, QC, 48°N) and during pre-breeding (April–May) in the Arctic (Alert, NU, 82°). Our results show that body mass, fat stores and Msum were similar between the two stages, while hematocrit and pectoralis muscle thickness were lower in pre-breeding birds than in wintering individuals. These results suggest that although tissue degradation during migration may affect flight muscle size, buntings are able to maintain cold endurance (i.e., Msum) up to their Arctic breeding grounds. However, BMR was higher during pre-breeding than during winter, suggesting higher maintenance costs in the Arctic.


Author(s):  
Catalina Picó ◽  
Mariona Palou ◽  
Catalina Amadora Pomar ◽  
Ana María Rodríguez ◽  
Andreu Palou

AbstractLeptin is a hormone primarily produced by the adipose tissue in proportion to the size of fat stores, with a primary function in the control of lipid reserves. Besides adipose tissue, leptin is also produced by other tissues, such as the stomach, placenta, and mammary gland. Altogether, leptin exerts a broad spectrum of short, medium, and long-term regulatory actions at the central and peripheral levels, including metabolic programming effects that condition the proper development and function of the adipose organ, which are relevant for its main role in energy homeostasis. Comprehending how leptin regulates adipose tissue may provide important clues to understand the pathophysiology of obesity and related diseases, such as type 2 diabetes, as well as its prevention and treatment. This review focuses on the physiological and long-lasting regulatory effects of leptin on adipose tissue, the mechanisms and pathways involved, its main outcomes on whole-body physiological homeostasis, and its consequences on chronic diseases.


2021 ◽  
Vol 22 (15) ◽  
pp. 8217
Author(s):  
Thomas M. Barber ◽  
Ioannis Kyrou ◽  
Gregory Kaltsas ◽  
Ashley B. Grossman ◽  
Harpal S. Randeva ◽  
...  

Reproductive function depends upon an operational hypothalamo–pituitary–gonadal (HPG) axis. Due to its role in determining survival versus reproductive strategies, the HPG axis is vulnerable to a diverse plethora of signals that ultimately manifest with Central Hypogonadism (CH) in all its many guises. Acquired CH can result from any pituitary or hypothalamic lesion, including its treatment (such as surgical resection and/or radiotherapy). The HPG axis is particularly sensitive to the suppressive effects of hyperprolactinaemia that can occur for many reasons, including prolactinomas, and as a side effect of certain drug therapies. Physiologically, prolactin (combined with the suppressive effects of autonomic neural signals from suckling) plays a key role in suppressing the gonadal axis and establishing temporary CH during lactation. Leptin is a further key endocrine regulator of the HPG axis. During starvation, hypoleptinaemia (from diminished fat stores) results in activation of hypothalamic agouti-related peptide neurons that have a dual purpose to enhance appetite (important for survival) and concomitantly suppresses GnRH neurons via effects on neural kisspeptin release. Obesity is associated with hyperleptinaemia and leptin resistance that may also suppress the HPG axis. The suppressibility of the HPG axis also leaves it vulnerable to the effects of external signals that include morphine, anabolic-androgenic steroids, physical trauma and stress, all of which are relatively common causes of CH. Finally, the HPG axis is susceptible to congenital malformations, with reports of mutations within >50 genes that manifest with congenital CH, including Kallmann Syndrome associated with hyposmia or anosmia (reduction or loss of the sense of smell due to the closely associated migration of GnRH with olfactory neurons during embryogenesis). Analogous to the HPG axis itself, patients with CH are often vulnerable, and their clinical management requires both sensitivity and empathy.


Sign in / Sign up

Export Citation Format

Share Document