On the oracle property of adaptive group Lasso in high-dimensional linear models

2015 ◽  
Vol 57 (1) ◽  
pp. 249-265 ◽  
Author(s):  
Caiya Zhang ◽  
Yanbiao Xiang
2017 ◽  
Vol 60 (5) ◽  
pp. 1469-1486 ◽  
Author(s):  
Mingqiu Wang ◽  
Guo-Liang Tian

Biometrics ◽  
2019 ◽  
Vol 75 (2) ◽  
pp. 551-561
Author(s):  
Zhe Fei ◽  
Ji Zhu ◽  
Moulinath Banerjee ◽  
Yi Li

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Jin-Jia Wang ◽  
Fang Xue ◽  
Hui Li

Feature extraction and classification of EEG signals are core parts of brain computer interfaces (BCIs). Due to the high dimension of the EEG feature vector, an effective feature selection algorithm has become an integral part of research studies. In this paper, we present a new method based on a wrapped Sparse Group Lasso for channel and feature selection of fused EEG signals. The high-dimensional fused features are firstly obtained, which include the power spectrum, time-domain statistics, AR model, and the wavelet coefficient features extracted from the preprocessed EEG signals. The wrapped channel and feature selection method is then applied, which uses the logistical regression model with Sparse Group Lasso penalized function. The model is fitted on the training data, and parameter estimation is obtained by modified blockwise coordinate descent and coordinate gradient descent method. The best parameters and feature subset are selected by using a 10-fold cross-validation. Finally, the test data is classified using the trained model. Compared with existing channel and feature selection methods, results show that the proposed method is more suitable, more stable, and faster for high-dimensional feature fusion. It can simultaneously achieve channel and feature selection with a lower error rate. The test accuracy on the data used from international BCI Competition IV reached 84.72%.


2012 ◽  
Vol 55 (2) ◽  
pp. 327-347 ◽  
Author(s):  
Dengke Xu ◽  
Zhongzhan Zhang ◽  
Liucang Wu

2013 ◽  
Vol 143 (9) ◽  
pp. 1417-1438 ◽  
Author(s):  
Mathilde Mougeot ◽  
Dominique Picard ◽  
Karine Tribouley

Sign in / Sign up

Export Citation Format

Share Document