A shuffled frog leaping algorithm with contraction factor and its application in mechanical optimum design

Author(s):  
Lianguo Wang ◽  
Xiaojuan Liu
Author(s):  
Jingcao Cai ◽  
Deming Lei

AbstractDistributed hybrid flow shop scheduling problem (DHFSP) has attracted some attention; however, DHFSP with uncertainty and energy-related element is seldom studied. In this paper, distributed energy-efficient hybrid flow shop scheduling problem (DEHFSP) with fuzzy processing time is considered and a cooperated shuffled frog-leaping algorithm (CSFLA) is presented to optimize fuzzy makespan, total agreement index and fuzzy total energy consumption simultaneously. Iterated greedy, variable neighborhood search and global search are designed using problem-related features; memeplex evaluation based on three quality indices is presented, an effective cooperation process between the best memeplex and the worst memeplex is developed according to evaluation results and performed by exchanging search times and search ability, and an adaptive population shuffling is adopted to improve search efficiency. Extensive experiments are conducted and the computational results validate that CSFLA has promising advantages on solving the considered DEHFSP.


2012 ◽  
Vol 197 ◽  
pp. 529-533 ◽  
Author(s):  
Kai Ping Luo

For vehicle routing problem, its model is easy to state and difficult to solve. The shuffled frog leaping algorithm is a novel meta-heuristic optimization approach and has strong quickly optimal searching power. The paper applies herein this algorithm to solve the vehicle routing problem; presents a high-efficiency encoding method based on the nearest neighborhood list; improves evolution strategies of the algorithm in order to keep excellent characteristics of the best frog. This proposed algorithm provides a new idea for solving VRP.


Sign in / Sign up

Export Citation Format

Share Document