hysteresis model
Recently Published Documents


TOTAL DOCUMENTS

852
(FIVE YEARS 167)

H-INDEX

37
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Latifa Obaid Alnuaimi ◽  
Mehran Sohrabi ◽  
Shokoufeh Aghabozorgi ◽  
Ahmed Alshmakhy

Abstract Simulation of Water-Alternating-Gas (WAG) Experiments require precise estimation of hysteresis phenomenon in three-phase relative permeability. Most of the research available in the literature are focused on experiments performed on sandstone rocks and the study of carbonate rocks has attracted less attention. In this paper, a recently published hysteresis model by Heriot-Watt University (HWU) was used for simulation of WAG experiments conducted on mixed-wet homogenous carbonate rock. In this study, we simulated immiscible WAG experiments, which were performed under reservoir conditions on mixed-wet carbonate reservoir rock extracted from Abu Dhabi field by using real reservoir fluids. Experiments are performed with different injection scenarios and at high IFT conditions. Then, the results of the coreflood experiments were history matched using 3RPSim to generate two-phase and three-phase relative permeability data. Finally, the hysteresis model suggested by Heriot-Watt University was used for the estimation of hysteresis in relative permeability data. The performance of the model was compared with the experimental data from sandstones to evaluate the impact of heterogeneity on hysteresis phenomenon. It was shown that the available correlations for estimation of three-phase oil relative permeability fail to simulate the oil production during WAG experiments, while the modified Stone model suggested by HWU provided a better prediction. Overall, HWU hysteresis model improved the match for trapped gas saturation and pressure drop. The results show that the hysteresis effect is less dominant in the carbonate rock compared to the sandstone rock. The tracer test results show that the carbonate rock is more homogenous compared to sandstone rock. Therefore, the conclusion is that the hysteresis effect is negligible in homogenous systems.


Author(s):  
Xiao Xiao ◽  
Fabian Müller ◽  
Martin Marco Nell ◽  
Kay Hameyer

Purpose This paper aims to use a history-dependent vector stop hysteresis model incorporated into a two dimensional finite elements (FE) simulation environment to solve the magnetic field problems in electrical machines. The vector stop hysteresis model is valid for representing the anisotropic magnetization characteristics of electrical steel sheets. Comparisons of the simulated results with measurements show that the model is well appropriate for the simulation of electrical machines with alternating, rotating and harmonic magnetic flux densities. Design/methodology/approach The anisotropy of the permeability of an electrical steel sheet can be represented by integrating anhysteretic surfaces into the elastic element of a vector hysteresis stop model. The parameters of the vector stop hysteresis model were identified by minimizing the errors between the simulated results and measurements. In this paper, a damped Newton method is applied to solve the nonlinear problem, which ensures a robust convergence of the finite elements simulation with vector stop hysteresis model. Findings Analyzing the measurements of the electrical steel sheets sample obtained from a rotational single sheet tester shows the importance to consider the anisotropic and saturation behavior of the material. Comparing the calculated and measured data corroborates the hypothesis that the presented energy-based vector stop hysteresis model is able to represent these magnetic properties appropriately. To ensure a unique way of hysteresis loops during finite elements simulation, the memory of the vector stop hysteresis model from last time step is kept unchanged during the Newton iterations. Originality/value The results of this work demonstrates that the presented vector hysteresis stop model allows simulation of vector hysteresis effects of electrical steel sheets in electrical machines with a limited amount of measurements. The essential properties of the electrical steel sheets, such as phase shifts, the anisotropy of magnetizations and the magnetization characteristics by alternating, rotating, harmonic magnetization types, can be accurately represented.


Author(s):  
N. Garibay-Nieto ◽  
B. Hernández-Morán ◽  
E. Villanueva-Ortega ◽  
M.J. Garcés-Hernández ◽  
K. Pedraza-Escudero ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7672
Author(s):  
Yutao Li ◽  
Liliang Wang ◽  
Hao Yu ◽  
Zheng Qian

Tunneling magnetoresistive (TMR) sensors have broad application prospects because of their high sensitivity and small volume. However, the inherent hysteresis characteristics of TMR affect its applications in high accuracy scenarios. It is essential to build a model to describe the attributes of hysteresis of TMR accurately. Preisach model is one of the popular models to describe the behavior of inherent hysteresis for TMR, whereas it presents low accuracy in high-order hysteresis reversal curves. Furthermore, the traditional Preisach model has strict congruence constraints, and the amount of data seriously affects the accuracy. This paper proposes a hysteresis model from a probability perspective. This model has the same computational complexity as the classic Preisach model while presenting higher accuracy, especially in high-order hysteresis reversal curves. When measuring a small amount of data, the error of this method is significantly reduced compared with the classical Preisach model. Besides, the proposed model’s congruence in this paper only needs equal vertical chords.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7638
Author(s):  
Trung Thien Hoang ◽  
Luke Sy ◽  
Mattia Bussu ◽  
Mai Thanh Thai ◽  
Harrison Low ◽  
...  

Soft actuators (SAs) have been used in many compliant robotic structure and wearable devices, due to their safe interaction with the wearers. Despite advances, the capability of current SAs is limited by scalability, high hysteresis, and slow responses. In this paper, a new class of soft, scalable, and high-aspect ratio fiber-reinforced hydraulic SAs is introduced. The new SA uses a simple fabrication process of insertion where a hollow elastic rubber tube is directly inserted into a constrained hollow coil, eliminating the need for the manual wrapping of an inextensible fiber around a long elastic structure. To provide high adaptation to the user skin for wearable applications, the new SAs are integrated into flexible fabrics to form a wearable fabric sleeve. To monitor the SA elongation, a soft liquid metal-based fabric piezoresistive sensor is also developed. To capture the nonlinear hysteresis of the SA, a novel asymmetric hysteresis model which only requires five model parameters in its structure is developed and experimentally validated. The new SAs-driven wearable robotic sleeve is scalable, highly flexible, and lightweight. It can also produce a large amount of force of around 23 N per muscle at around 30% elongation, to provide useful assistance to the human upper limbs. Experimental results show that the soft fabric sleeve can augment a user’s performance when working against a load, evidenced by a significant reduction on the muscular effort, as monitored by electromyogram (EMG) signals. The performance of the developed SAs, soft fabric sleeve, soft liquid metal fabric sensor, and nonlinear hysteresis model reveal that they can effectively modulate the level of assistance for the wearer. The new technologies obtained from this work can be potentially implemented in emerging assistive applications, such as rehabilitation, defense, and industry.


Sign in / Sign up

Export Citation Format

Share Document