Interdecadal change in the South China Sea summer monsoon withdrawal around the mid-2000s

2018 ◽  
Vol 52 (9-10) ◽  
pp. 6053-6064 ◽  
Author(s):  
Peng Hu ◽  
Wen Chen ◽  
Shangfeng Chen
2012 ◽  
Vol 25 (9) ◽  
pp. 3207-3218 ◽  
Author(s):  
Yoshiyuki Kajikawa ◽  
Bin Wang

A significant advance in the onset dates of the South China Sea summer monsoon (SCSSM) is detected around 1993/94: the epochal mean onset date is 30 May for 1979–93 and 14 May for 1994–2008. The relatively late onset during the first epoch is primarily determined by the northward seasonal march of the intertropical convergence zone, whereas the advanced onset during the second epoch is affected by the enhanced activity of northwestward-moving tropical disturbances from the equatorial western Pacific. During 1994–2008, the intraseasonal variability (ISV) over the western Pacific was enhanced during the period from mid-April to mid-May; further, the number of tropical cyclones (TCs), which passed through the South China Sea (SCS) and Philippine Sea during the same period, is about doubled compared with those occurring during 1979–93. This enhanced ISV and TC activity over the SCS and Philippine Sea are attributed to a significant increase in SST over the equatorial western Pacific from the 1980s to 2000s. Therefore, the advanced SCSSM onset is rooted in the decadal change of the SST over the equatorial western Pacific.


2015 ◽  
Vol 28 (22) ◽  
pp. 9029-9035 ◽  
Author(s):  
Guanghua Chen

Abstract In a recent paper, Kajikawa and Wang detected the interdecadal shift of the South China Sea summer monsoon (SCSSM) onset with a late SCSSM onset in an earlier epoch (1979–93) and an early SCSSM onset in a later epoch (1994–2008) and attributed this change to enhanced tropical cyclone (TC) activity and intraseasonal variability (ISV) related to 30–80-day and 10–25-day anomalies in the second epoch. This comment assesses the individual impact of TCs and ISV on the interdecadal change of the SCSSM onset by means of the removal of anomalies associated with TCs and ISV. Results herein show that TCs have no significant impact on the SCSSM onset in all years, except 2006 in which a strong and long-lived TC occurred over the South China Sea. After removing the 30–80-day anomaly, the difference in the mean SCSSM onset date in the two epochs decreases to some extent, implying that the 30–80-day anomaly can, in part, play a role in the interdecadal shift of the SCSSM onset. In contrast, the 10–25-day anomaly has an insignificant contribution to the interdecadal shift of the SCSSM onset. The discrepancy of ISV contribution results from the SCSSM background state, the magnitude and spatiotemporal scale of ISV, and the phase relationship between ISV and SCSSM transition from easterly to westerly.


2006 ◽  
Author(s):  
Yanzhen Chi ◽  
Zhaoyong Guan ◽  
Jinhai He ◽  
Li Qi ◽  
Xuefen Zhang

2018 ◽  
Vol 19 (11) ◽  
pp. e858 ◽  
Author(s):  
Jingliang Huangfu ◽  
Wen Chen ◽  
Xu Wang ◽  
Ronghui Huang

2011 ◽  
Vol 89A ◽  
pp. 283-290 ◽  
Author(s):  
Rosbintarti Kartika LESTARI ◽  
Masahiro WATANABE ◽  
Masahide KIMOTO

2005 ◽  
Vol 18 (13) ◽  
pp. 2388-2402 ◽  
Author(s):  
Jiangyu Mao ◽  
Johnny C. L. Chan

Abstract The objective of this study is to explore, based on the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis data, the intraseasonal variability of the South China Sea (SCS) summer monsoon (SM) in terms of its structure and propagation, as well as interannual variations. A possible mechanism that is responsible for the origin of the 10–20-day oscillation of the SCS SM is also proposed. The 30–60-day (hereafter the 3/6 mode) and 10–20-day (hereafter the 1/2 mode) oscillations are found to be the two intraseasonal modes that control the behavior of the SCSSM activities for most of the years. Both the 3/6 and 1/2 modes are distinct, but may not always exist simultaneously in a particular year, and their contributions to the overall variations differ among different years. Thus, the interannual variability in the intraseasonal oscillation activity of the SCS SM may be categorized as follows: the 3/6 category, in which the 3/6 mode is more significant (in terms of the percentage of variance explained) than the 1/2 mode; the 1/2 category, in which the 1/2 mode is dominant; and the dual category, in which both the 3/6 and 1/2 modes are pronounced. Composite analyses of the 3/6 category cases indicate that the 30–60-day oscillation of the SCS SM exhibits a trough–ridge seesaw in which the monsoon trough and subtropical ridge exist alternatively over the SCS, with anomalous cyclones (anticyclones), along with enhanced (suppressed) convection, migrating northward from the equator to the midlatitudes. The northward-migrating 3/6-mode monsoon trough–ridge in the lower troposphere is coupled with the eastward-propagating 3/6-mode divergence–convergence in the upper troposphere. It is also found that, for the years in the dual category, the SCS SM activities are basically controlled by the 3/6 mode, but modified by the 1/2 mode. Composite results of the 1/2-mode category cases show that the 10–20-day oscillation is manifest as an anticyclone–cyclone system over the western tropical Pacific, propagating northwestward into the SCS. A close coupling also exists between the upper-level convergence (divergence) and the low-level anticyclone (cyclone). It is found that the 1/2 mode of the SCS SM mainly originates from the equatorial central Pacific, although a disturbance from the northeast of the SCS also contributes to this mode. The flow patterns from an inactive to an active period resemble those associated with a mixed Rossby–gravity wave observed in previous studies.


Sign in / Sign up

Export Citation Format

Share Document