lower troposphere
Recently Published Documents


TOTAL DOCUMENTS

1685
(FIVE YEARS 385)

H-INDEX

83
(FIVE YEARS 9)

MAUSAM ◽  
2022 ◽  
Vol 53 (4) ◽  
pp. 503-514
Author(s):  
R. SURESH

The total ozone derived from TOVS data from NOAA 12 satellite through one step physical retrieval algorithm of  International TOVS Processing Package (ITPP) version 5.0 has been used to identify  its diurnal, monthly, latitudinal and longitudinal variability during 1998 over the domain Equator to 26° N / 60-100° E. The linkage of  maximum total ozone with warmer tropopause and lower stratosphere has been re-established. The colder upper tropospheric temperature which is normally associated with maximum ozone concentration throughout the year elsewhere in the world  has also been identified in this study but the relationship gets reversed during southwest  monsoon months(June-September) over the domain considered. The moisture  available in abundance in the lower troposphere gets precipitated due to the convective instability prevailing in the atmosphere during monsoon season and very little moisture is only available for vertical transport into the upper troposphere atop 500 hPa. The latent heat released by the  precipitation processes warms up the middle and upper atmosphere. The warm and dry upper troposphere could be the reason for less depletion of ozone in the upper troposphere during monsoonal  months and this is supported by the positive correlation coefficient prevailing in monsoon season between  total ozone and upper tropospheric (aloft 300 hPa) temperature. The warmness in middle and upper troposphere which is associated with less depletion and/or production of more  ozone in the upper troposphere may  perhaps contribute  for the  higher total ozone during monsoon months than in other seasons over peninsular Indian region.  The minimum concentration is observed during January (226 DU) over 6° N and the maximum (283DU) over 18° N during August. Longitudinal variability is less pronounced than the latitudinal variability.


2022 ◽  
Author(s):  
Alessandro Carlo Maria Savazzi ◽  
Louise Nuijens ◽  
Irina Sandu ◽  
Geet George ◽  
Peter Bechtold

Abstract. The characterization of systematic forecast errors in lower-tropospheric winds over the ocean is a primary need for reforming models. Winds are among the drivers of convection, thus an accurate representation of winds is essential for better convective parameterizations. We focus on the temporal variability and vertical distribution of lower-tropospheric wind biases in operational medium-range weather forecasts and ERA5 reanalyses produced with the Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). Thanks to several sensitivity experiments and an unprecedented wealth of measurements from the 2020 EUREC4A field campaign, we show that the wind bias varies greatly from day to day, resulting in RSME's up to 2.5 m s−1, with a mean wind speed bias up to −1 m s−1 near and above the trade-inversion in the forecasts and up to −0.5 m s−1 in reanalyses. The modeled zonal and meridional wind exhibit a too strong diurnal cycle, leading to a weak wind speed bias everywhere up to 5 km during daytime, turning into a too strong wind speed bias below 2 km at nighttime. The biases are fairly insensitive to the assimilation of sondes and likely related to remote convection and large scale pressure gradients. Convective momentum transport acts to distribute biases throughout the lowest 1.5 km, whereas at higher levels, other unresolved or dynamical tendencies play a role in setting the bias. Below 1 km, modelled friction due to unresolved physical processes appears too strong, but is (partially) compensated by dynamical tendencies, making this a challenging coupled problem.


2022 ◽  
Vol 15 (1) ◽  
pp. 199-218
Author(s):  
Xiaodong Wang ◽  
Chun Zhao ◽  
Mingyue Xu ◽  
Qiuyan Du ◽  
Jianqiu Zheng ◽  
...  

Abstract. Domain size can have significant impact on regional modeling results, but few studies examined the sensitivities of simulated aerosol impact to regional domain size. This study investigates the regional modeling sensitivities of aerosol impact on the East Asian summer monsoon (EASM) to domain size. The simulations with two different domain sizes demonstrate consistently that aerosols induce the cooling of the lower troposphere that leads to the anticyclone circulation anomalies and thus the weakening of EASM moisture transport. The aerosol-induced adjustment of monsoonal circulation results in an alternate increase and decrease pattern of precipitation over China. Domain size has a great influence on the simulated meteorological fields. For example, the simulation with larger domain size produces weaker EASM circulation, which also affects aerosol distributions significantly. This leads to the difference of simulated strength and area extent of aerosol-induced changes of lower-tropospheric temperature and pressure, which further results in different distributions of circulation and precipitation anomalies over China. For example, over southeastern China, aerosols induce the increase (decrease) of precipitation from the smaller-domain (larger-domain) simulation. Different domain sizes consistently simulate an aerosol-induced increase in precipitation around 30∘ N over eastern China. This study highlights the important influence of domain size on regional modeling results of aerosol impact on circulation and precipitation, which may not be limited to East Asia. More generally, this study also implies that proper modeling of meteorological fields with appropriate domain size is one of the keys to simulating robust aerosol climatic impact.


2022 ◽  
Author(s):  
Lu Wang ◽  
Jie Jiang ◽  
Tim Li

Abstract The southern China (SC) exhibits a strong intraseasonal precipitation variability in boreal winter, but so far the relative contributions of the tropical Madden-Julian Oscillation (MJO) and the mid-latitude intraseasonal oscillation (ISO) is unclear. This issue is addressed through a cluster analysis. The result shows that 53% of strong intraseasonal precipitation events are unrelated to the MJO. They are caused by southward propagation of a low-pressure anomaly in the lower troposphere from higher latitudes. Southerly anomalies associated with the low-pressure system transport high mean moisture from South China Sea, leading to moisture accumulation over SC. 47% of the events are accompanied by the MJO, and they can be further divided into two groups: one with enhanced MJO convection over the eastern Indian Ocean (termed as IO group), and the other over the Maritime Continent (termed as MC group). For the IO group, the SC precipitation is triggered by low-level southerly anomalies associated with an anomalous anticyclone over the western North Pacific (WNP) in association with suppressed MJO convection in situ, as well as the upper-tropospheric divergence related to a wave train excited from the MJO convection. For the MC group, both the upper-tropospheric wave train related to MJO and the southward propagation of low-pressure anomaly from higher latitudes in the lower troposphere contribute to trigger the SC precipitation.


Author(s):  
Ricardo C. Muñoz ◽  
C. David Whiteman ◽  
René D. Garreaud ◽  
José A. Rutllant ◽  
Jacqueline Hidalgo

AbstractThe World Meteorological Organization Aircraft Meteorological Data Relay (AMDAR) programme refers to meteorological data gathered by commercial aircraft and made available to weather services. It has become a major source of upper-air observations whose assimilation into global models has greatly improved their performance. Near busy airports, AMDAR data generate semi-continuous vertical profiles of temperature and winds, which have been utilized to produce climatologies of atmospheric-boundary-layer (ABL) heights and general characterizations of specific cases. We analyze 2017–2019 AMDAR data for Santiago airport, located in the centre of a $$40\times 100$$ 40 × 100  km$$^2$$ 2 subtropical semi-arid valley in central Chile, at the foothills of the Andes. Profiles derived from AMDAR data are characterized and validated against occasional radiosondes launched in the valley and compared with routine operational radiosondes and with reanalysis data. The cold-season climatology of AMDAR temperatures reveals a deep nocturnal inversion reaching up to 700 m above ground level (a.g.l.) and daytime warming extending up to 1000 m a.g.l. Convective-boundary-layer (CBL) heights are estimated based on AMDAR profiles and the daytime heat budget of the CBL is assessed. The CBL warming variability is well explained by the surface sensible heat flux estimated with sonic anemometer measurements at one site, provided advection of the cool coastal ABL existing to the west is included. However, the CBL warming accounts for just half of the mean daytime warming of the lower troposphere, suggesting that rather intense climatological diurnal subsidence affects the dynamics of the daytime valley ABL. Possible sources of this subsidence are discussed.


2022 ◽  
Author(s):  
Ruping Mo ◽  
Hai Lin ◽  
Frédéric Vitart

Abstract Atmospheric rivers (ARs) are long and narrow bands of enhanced water vapour flux concentrated in the lower troposphere. Many studies have documented the important role of cold-season ARs in producing heavy precipitation and triggering extreme flooding in many parts of the world. However, relatively little research has been conducted on the warm-season ARs and their impacts on extreme heatwave development. Here we show an anomalous warm-season AR moving across the North Pacific and its interaction with the western North American heatwave in late June 2021. We call it an “oriental express’’ to highlight its capability to transport tropical moisture to the west coast of North America from sources in Southeast Asia. Its landfall over the Alaska Panhandle lasted for more than two days and resulted in significant spillover of moisture into western Canada. We provide evidence that the injected water vapour was trapped under the heat dome and may have formed a positive feedback mechanism to regulate the heatwave development in western North America.


2022 ◽  
Vol 15 (1) ◽  
pp. 131-148
Author(s):  
Songhua Wu ◽  
Kangwen Sun ◽  
Guangyao Dai ◽  
Xiaoye Wang ◽  
Xiaoying Liu ◽  
...  

Abstract. After the successful launch of Aeolus, which is the first spaceborne wind lidar developed by the European Space Agency (ESA), on 22 August 2018, we deployed several ground-based coherent Doppler wind lidars (CDLs) to verify the wind observations from Aeolus. By the simultaneous wind measurements with CDLs at 17 stations over China, the Rayleigh-clear and Mie-cloudy horizontal-line-of-sight (HLOS) wind velocities from Aeolus in the atmospheric boundary layer and the lower troposphere are compared with those from CDLs. To ensure the quality of the measurement data from CDLs and Aeolus, strict quality controls are applied in this study. Overall, 52 simultaneous Mie-cloudy comparison pairs and 387 Rayleigh-clear comparison pairs from this campaign are acquired. All of the Aeolus-produced Level 2B (L2B) Mie-cloudy HLOS wind and Rayleigh-clear HLOS wind and CDL-produced HLOS wind are compared individually. For the inter-comparison result of Mie-cloudy HLOS wind and CDL-produced HLOS wind, the correlation coefficient, the standard deviation, the scaled mean absolute deviation (MAD) and the bias are 0.83, 3.15 m s−1, 2.64 m s−1 and −0.25 m s−1, respectively, while the y=ax slope, the y=ax+b slope and the y=ax+b intercept are 0.93, 0.92 and −0.33 m s−1. For the Rayleigh-clear HLOS wind, the correlation coefficient, the standard deviation, the scaled MAD and the bias are 0.62, 7.07 m s−1, 5.77 m s−1 and −1.15 m s−1, respectively, while the y=ax slope, the y=ax+b slope and the y=ax+b intercept are 1.00, 0.96 and −1.2 m s−1. It is found that the standard deviation, the scaled MAD and the bias on ascending tracks are lower than those on descending tracks. Moreover, to evaluate the accuracy of Aeolus HLOS wind measurements under different product baselines, the Aeolus L2B Mie-cloudy HLOS wind data and L2B Rayleigh-clear HLOS wind data under Baselines 07 and 08, Baselines 09 and 10, and Baseline 11 are compared against the CDL-retrieved HLOS wind data separately. From the comparison results, marked misfits between the wind data from Aeolus Baselines 07 and 08 and wind data from CDLs in the atmospheric boundary layer and the lower troposphere are found. With the continuous calibration and validation and product processor updates, the performances of Aeolus wind measurements under Baselines 09 and 10 and Baseline 11 are improved significantly. Considering the influence of turbulence and convection in the atmospheric boundary layers and the lower troposphere, higher values for the vertical velocity are common in this region. Hence, as a special note, the vertical velocity could impact the HLOS wind velocity retrieval from Aeolus.


2022 ◽  
Author(s):  
Sandrine Bony ◽  
Marie Lothon ◽  
Julien Delanoë ◽  
Pierre Coutris ◽  
Jean-Claude Etienne ◽  
...  

Abstract. As part of the EUREC4A (Elucidating the role of cloud-circulation coupling in climate) field campaign, which took place in January and February 2020 over the western tropical Atlantic near Barbados, the French SAFIRE ATR42 research aircraft conducted 19 flights in the lower troposphere. Each flight followed a common flight pattern that sampled the atmosphere around the cloud-base level, at different heights of the subcloud layer, near the sea surface and in the lower free troposphere. The aircraft's payload included a backscatter lidar and a Doppler cloud radar that were both horizontally oriented, a Doppler cloud radar looking upward, microphysical probes, a cavity ring-down spectrometer for water isotopes, a multiwavelength radiometer, a visible camera and multiple meteorological sensors, including fast rate sensors for turbulence measurements. With this instrumentation, the ATR characterized the macrophysical and microphysical properties of trade-wind clouds together with their thermodynamical, turbulent and radiative environment. This paper presents the airborne operations, the flight segmentation, the instrumentation, the data processing and the EUREC4A datasets produced from the ATR measurements. It shows that the ATR measurements of humidity, wind and cloud-base cloud fraction measured with different techniques and samplings are internally consistent, that meteorological measurements are consistent with estimates from dropsondes launched from an overflying aircraft (HALO), and that water isotopic measurements are well correlated with data from the Barbados Cloud Observatory. This consistency demonstrates the robustness of the ATR measurements of humidity, wind, cloud-base cloud fraction and water isotopic composition during EUREC4A. It also confirms that through their repeated flight patterns, the ATR and HALO measurements provided a statistically consistent sampling of trade-wind clouds and of their environment. The ATR datasets are freely available at the locations specified in Table 11.


MAUSAM ◽  
2022 ◽  
Vol 45 (2) ◽  
pp. 161-164
Author(s):  
SURENDRA S. PARASNIS

Variation. in Precipitable Water Content (pWC) at Pune (lse32'N. 73·S1'E..ssg m u 1)duri ngIUmmer mon aoon aealOM of 1980 and 1981. have been studied. Spectrum of PWC values in layen 9OQ..650 bPashowed peals at period. 2-3 and '·8 days. The periodicities observed in PWC ~comparable with these observed. in other mckorolOlical parameters.


MAUSAM ◽  
2021 ◽  
Vol 44 (1) ◽  
pp. 15-18
Author(s):  
R. V. SHARMA ◽  
THAKUR PRASAD ◽  
SHRAVAN KUMAR

Variations of radio refractive index (RRI) in the lower troposphere over Bombay and Thiru-vananthapuram have been studied for the months from April to July for the years 1979 to 1987. It is seen that in most of the years, the radio refractive index at 900 hPa over Bombay increased significantly prior to onset of monsoon over Kerala (Thiruvananthapuram) and well in advance of the arrival monsoon over Bom-bay. Variation of RRI at 850 hPa level over Bombay also shows significant increase a few days later than at 900 liPa level. At higher levels no such significant changes are observed. The KM value over Thinivanantha-purain at 900 hPa or at 850 hPa does not show significant rise from pre-monsoon to monsoon months. The results show a slight decreasing trend during the same period.


Sign in / Sign up

Export Citation Format

Share Document