A revisit of the interannual variation of the South China Sea upper layer circulation in summer: correlation between the eastward jet and northward branch

2019 ◽  
Vol 54 (1-2) ◽  
pp. 457-471 ◽  
Author(s):  
Tingting Zu ◽  
Dongxiao Wang ◽  
Qiang Wang ◽  
Mingting Li ◽  
Jun Wei ◽  
...  
2018 ◽  
Vol 52 (3-4) ◽  
pp. 1917-1933 ◽  
Author(s):  
Tingting Zu ◽  
Huijie Xue ◽  
Dongxiao Wang ◽  
Bingxu Geng ◽  
Lili Zeng ◽  
...  

Radiocarbon ◽  
2004 ◽  
Vol 46 (2) ◽  
pp. 595-601 ◽  
Author(s):  
C D Shen ◽  
W X Yi ◽  
K F Yu ◽  
Y M Sun ◽  
Y Yang ◽  
...  

Twenty-two annually banded samples of coral from 1977 to 1998 were collected from Daya Bay, South China Sea, and bomb 14C concentrations were determined. The interannual variation of coral Δ14C is controlled mainly by oceanic factors. In ENSO years, the coastwise upwelling current of the South China Sea has been intensified; hence, the coral Δ14C displays its minimum value. The interannual variation curve of Δ14C in coral bears a relationship with the Southern Oscillation Index (SOI) curves: the correlation coefficient between Δ14C and (SOI)w is 0.43 and the correlation coefficient between Δ14C and (SOI)y is 0.27. The coral Δ14C has no remarkable response to the variation of solar radiation energy. In the past 20 yr or so, the general situation and oceanic thermal structure of the South China Sea are still stable even though interannual variations in atmosphere-sea interaction and upwelling current driven by the tropical energy have occurred.


2011 ◽  
Vol 24 (16) ◽  
pp. 4295-4313 ◽  
Author(s):  
Tsing-Chang Chen ◽  
Wan-Ru Huang ◽  
Ming-Cheng Yen

Abstract Major rainfall (≥60%) in the northern part of the South China Sea (between North Vietnam and Taiwan) during May–June (the mei-yu season—the first phase of the Southeast–East Asian monsoon) is produced by rainstorms originating over the northern Vietnam–southwestern China region and the northern part of the South China Sea. As observed in this study, the occurrence frequency of rainstorms and rainfall contribution by these rainstorms undergoes a distinct interannual variation, in-phase with those of monsoon westerlies in northern Indochina and sea surface temperature (SST) anomalies over the NOAA Niño-3.4 region ΔSST (Niño-3.4). This in-phase relationship between monsoon westerlies and the ΔSST (Niño-3.4) anomalies is a result of the filling (deepening) of the subtropical Asian continental thermal low in response to the ΔSST (Niño-3.4) warm (cold) anomalies. Accompanied with this response is a slight southward (northward) shift of the North Pacific convergence zone (NPCZ), which extends from southern China to the North Pacific east of Japan. Thus, a favorable environment that meets the Charney–Stern instability criterion in initiating rainstorm genesis is enhanced (suppressed) by the intensification (weakening) of the monsoon shear flow formed by the midtropospheric northwesterly flow around the northeast periphery of the Tibetan Plateau and the monsoon westerlies. The meridional shift of the NPCZ established an elongated anomalous convergence (divergence) zone of water vapor flux along rainstorm tracks to increase (reduce) the rain-producing efficiency of rainstorms. Consequently, this interannual rainfall variation between northern Vietnam and Taiwan is primarily caused by rainstorm genesis and rain-producing efficiency.


Sign in / Sign up

Export Citation Format

Share Document