Response of an elastic half-space with power-law nonhomogeneity to static loads

2008 ◽  
Vol 78 (12) ◽  
pp. 965-987 ◽  
Author(s):  
G. B. Muravskii
2013 ◽  
Vol 80 (6) ◽  
Author(s):  
Fan Jin ◽  
Xu Guo ◽  
Wei Zhang

In the present paper, axisymmetric frictionless adhesive contact between a rigid punch and a power-law graded elastic half-space is analytically investigated with use of Betti's reciprocity theorem and the generalized Abel transformation, a set of general closed-form solutions are derived to the Hertzian contact and Johnson–Kendall–Roberts (JKR)-type adhesive contact problems for an arbitrary punch profile within a circular contact region. These solutions provide analytical expressions of the surface stress, deformation fields, and equilibrium relations among the applied load, indentation depth, and contact radius. Based on these results, we then examine the combined effects of material inhomogeneities and punch surface morphologies on the adhesion behaviors of the considered contact system. The analytical results obtained in this paper include the corresponding solutions for homogeneous isotropic materials and the Gibson soil as special cases and, therefore, can also serve as the benchmarks for checking the validity of the numerical solution methods.


2019 ◽  
Vol 17 (1) ◽  
pp. 47 ◽  
Author(s):  
Markus Hess

For the steady wear state of two contact problems involving power-law graded materials, closed-form solutions are derived in terms of pressure distribution and limiting shapes of profile. Both gross slip of an initially flat-ended cylindrical punch on a power-law graded half-space and the load-controlled fretting wear under partial slip of an initially parabolic indenter are studied. In the case of gross slip at fixed penetration depth there exists a certain exponent of elastic inhomogeneity, for which the effective volume change takes its maximum value. To minimize wear due to fretting under partial slip, an amplitude dependent design of the material gradient is necessary. For large amplitudes of the tangential force a gradient ranged from a soft surface to a hard ground is beneficial, small amplitudes require a reverse gradient characterized by a hard surface and a soft ground. However, the choice of the material gradient also has a decisive influence on the strength of stress singularities at the contact edge and thus the initiation of fretting fatigue cracks, which is why it is discussed in more detail.


2009 ◽  
Vol 57 (9) ◽  
pp. 1437-1448 ◽  
Author(s):  
Shaohua Chen ◽  
Cong Yan ◽  
Peng Zhang ◽  
Huajian Gao

Sign in / Sign up

Export Citation Format

Share Document