Simulation of fully nonlinear water wave propagation over the flat bottom and uneven bottom by meshless numerical wave tank

Author(s):  
Morteza Gholamipoor ◽  
Mahmoud Ghiasi
2019 ◽  
Vol 33 (4) ◽  
pp. 364-376 ◽  
Author(s):  
Woo-Dong Lee ◽  
Yeon-Myeong Jeong ◽  
Kyu-Nam Choi ◽  
Dong-Soo Hur

Author(s):  
Zaibin Lin ◽  
Ling Qian ◽  
Wei Bai ◽  
Zhihua Ma ◽  
Hao Chen ◽  
...  

Abstract A 3-Dimensional numerical wave tank based on the fully nonlinear potential flow theory has been developed in OpenFOAM, where the Laplace equation of velocity potential is discretized by Finite Volume Method. The water surface is tracked by the semi-Eulerian-Lagrangian method, where water particles on the free surface are allowed to move vertically only. The incident wave is generated by specifying velocity profiles at inlet boundary with a ramp function at the beginning of simulation to prevent initial transient disturbance. Additionally, an artificial damping zone is located at the end of wave tank to sufficiently absorb the outgoing waves before reaching downstream boundary. A five-point smoothing technique is applied at the free surface to eliminate the saw-tooth instability. The proposed wave model is validated against theoretical results and experimental data. The developed solver could be coupled with multiphase Navier-Stokes solvers in OpenFOAM in the future to establish an integrated versatile numerical wave tank for studying efficiently wave structure interaction problems.


2020 ◽  
Vol 8 (9) ◽  
pp. 727
Author(s):  
Dimitris I. Manolas ◽  
Vasilis A. Riziotis ◽  
Spyros G. Voutsinas

Accurate and efficient numerical wave generation and absorption of two-dimensional nonlinear periodic waves traveling on a steady, uniform current were carried out in a potential, fully nonlinear numerical wave tank. The solver is based on the Βoundary Εlement Μethod (ΒΕΜ) with linear singularity distributions and plane elements and on the mixed Eulerian–Lagrangian formulation of the free surface equations. Wave generation is implemented along the inflow boundary by imposing the stream function wave solution, while wave absorption at both end-boundaries is effectively treated by introducing absorbing layers. On the absorbing beach side, the outflow boundary condition is modified to ensure that the solution accurately satisfies the dispersion relation of the generated waves. The modification involves a free-parameter that depends on the mass flux through the domain and is determined through a feedback error-correction loop. The developed method provides accurate time domain wave solutions for shallow, intermediate, and deep water depths of high wave steepness (wave heights up to 80% of the maximum value) that remain stable for 150 wave periods. This also holds in case a coplanar or opposing uniform current of velocity up to 20% of the wave celerity interacts with the wave.


Sign in / Sign up

Export Citation Format

Share Document