periodic waves
Recently Published Documents


TOTAL DOCUMENTS

484
(FIVE YEARS 103)

H-INDEX

38
(FIVE YEARS 7)

Author(s):  
Hengchun Hu ◽  
Xiaodan Li

The nonlocal symmetry of the new (3+1)-dimensional Boussinesq equation is obtained with the truncated Painlev\'{e} method. The nonlocal symmetry can be localized to the Lie point symmetry for the prolonged system by introducing auxiliary dependent variables. The finite symmetry transformation related to the nonlocal symmetry of the integrable (3+1)-dimensional Boussinesq equation is studied. Meanwhile, the new (3+1)-dimensional Boussinesq equation is proved by the consistent tanh expansion method and many interaction solutions among solitons and other types of nonlinear excitations such as cnoidal periodic waves and resonant soliton solution are given.


Author(s):  
Calvin Djoptoussia ◽  
Camus Gaston Latchio Tiofack ◽  
Alim ◽  
Alidou Mohamadou ◽  
Timoléon Crépin Kofané

Author(s):  
Pengming Zhang ◽  
Mahmut Elbistan ◽  
Peter A Horvathy

Abstract Bialynicki-Birula and Charzynski argued that a gravitational wave emitted during the merger of a black hole binary may be approximated by a circularly polarized wave which may in turn trap particles [1]. In this paper we consider particle motion in a class of gravitational waves which includes, besides circularly polarized periodic waves (CPP) [2], also the one proposed by Lukash [3] to study anisotropic cosmological models. Both waves have a 7-parameter conformal symmetry which contains, in addition to the generic 5-parameter (broken) Carroll group, also a 6th isometry. The Lukash spacetime can be transformed by a conformal rescaling of time to a perturbed CPP problem. Bounded geodesics, found both analytically and numerically, arise when the Lukash wave is of Bianchi type VI. Their symmetries can also be derived from the Lukash-CPP relation. Particle trapping is discussed.


2021 ◽  
Vol 932 ◽  
Author(s):  
Boyuan Yu ◽  
Vincent H. Chu

Roll waves produced by a local disturbance comprise a group of shock waves with steep fronts. We used a robust and accurate numerical scheme to capture the steep fronts in a shallow-water hydraulic model of the waves. Our simulations of the waves in clear water revealed the existence of a front runner with an exceedingly large amplitude – much greater than those of all other shock waves in the wave group. The trailing waves at the back remained periodic. Waves were produced continuously within the group due to nonlinear instability. The celerity depended on the wave amplitude. Over time, the instability produced an increasing number of shock waves in an ever-expanding wave group. We conducted simulations for three types of local disturbances of very different duration over a range of amplitudes. We interpreted the simulation results for the front runner and the trailing waves, guided by an analytical solution and the laboratory data available for the smaller waves in the trailing end of the wave group.


Author(s):  
Junjie Li ◽  
Jalil Manafian ◽  
Nguyen Thi Hang ◽  
Dinh Tran Ngoc Huy ◽  
Alla Davidyants

Abstract The Hirota bilinear method is prepared for searching the diverse soliton solutions to the (2+1)-dimensional Kadomtsev–Petviashvili–Benjamin–Bona–Mahony (KP-BBM) equation. Also, the Hirota bilinear method is used to find the lump and interaction with two stripe soliton solutions. Interaction among lumps, periodic waves, and one-kink soliton solutions are investigated. Also, the solitary wave, periodic wave, and cross-kink wave solutions are examined for the KP-BBM equation. The graphs for various parameters are plotted to contain a 3D plot, contour plot, density plot, and 2D plot. We construct the exact lump and interaction among other types of solutions, by solving the underdetermined nonlinear system of algebraic equations with the associated parameters. Finally, analysis and graphical simulation are presented to show the dynamical characteristics of our solutions, and the interaction behaviors are revealed. The existing conditions are employed to discuss the available got solutions.


2021 ◽  
Author(s):  
Nadia Barreiro ◽  
Tzipe Govezensky ◽  
Cecilia Ventura ◽  
Matias Nunez ◽  
Pablo Bolcatto ◽  
...  

Most COVID-19 vaccines have proved to be effective to combat the pandemic and to prevent severe disease but their distribution proceeds in a context of global vaccine shortage Their uneven distribution favors the appearance of new variants of concern, as the highly transmissible Delta variant, affecting especially non-vaccinated people. We consider that devising reliable models to analyse the spread of the different variants is crucial. These models should include the effects of vaccination as well as non-pharmaceutical measures used to contain the pandemic by modifying social behaviour. In this work, we present a stochastic geographical model that fulfills these requirements. It consists of an extended compartmental model that includes various strains and vaccination strategies, allowing to study the emergence and dynamics of the new COVID-19 variants. The models conveniently separates the parameters related to the disease from the ones related to social behavior and mobility restrictions. The geographical spread of the virus is modeled taking into account the actual population distribution in any given country of interest. Here we choose the UK as model system, taking advantage of the reliable available data, in order to fit the recurrence of the currently prevalent variants. Our computer simulations allow to describe some global features observed in the daily number of cases, as the appearance of periodic waves and the features that determine the prevalence of certain variants. They also provide useful predictions aiming to help planning future vaccination boosters. We stress that the model could be applied to any other country of interest.


2021 ◽  
Vol 5 (4) ◽  
pp. 234
Author(s):  
Aly R. Seadawy ◽  
Syed T. R. Rizvi ◽  
Saad Althobaiti

In this paper, we study the improved perturbed nonlinear Schrödinger equation with cubic quadratic nonlinearity (IPNLSE-CQN) to describe the propagation properties of nonlinear periodic waves (PW) in fiber optics. We obtain the chirped periodic waves (CPW) with some Jacobi elliptic functions (JEF) and also obtain some solitary waves (SW) such as dark, bright, hyperbolic, singular and periodic solitons. The nonlinear chirp associated with each of these optical solitons was observed to be dependent on the pulse intensity. The graphical behavior of these waves will also be displayed.


2021 ◽  
Vol 31 (14) ◽  
Author(s):  
Yiren Chen ◽  
Wensheng Chen

Using bifurcation analytic method of dynamical systems, we investigate the nonlinear waves and their bifurcations of the generalized KdV–mKdV-like equation. We obtain the following results : (i) Three types of new explicit expressions of nonlinear waves are obtained. They are trigonometric expressions, exp-function expressions, and hyperbolic expressions. (ii) Under different parameteric conditions, these expressions represent different waves, such as solitary waves, kink waves, 1-blow-up waves, 2-blow-up waves, smooth periodic waves and periodic blow-up waves. (iii) Two kinds of new interesting bifurcation phenomena are revealed. The first phenomenon is that the single-sided periodic blow-up waves can bifurcate from double-sided periodic blow-up waves. The second phenomenon is that the double-sided 1-blow-up waves can bifurcate from 2-blow-up waves. Furthermore, we show that the new expressions encompass many existing results.


Author(s):  
Diane M. Henderson ◽  
John D. Carter ◽  
Megan E. Catalano

Sign in / Sign up

Export Citation Format

Share Document