Development of 3-Dimensional Fully Nonlinear Potential Flow Planar Wave Tank in Framework of OpenFOAM

Author(s):  
Zaibin Lin ◽  
Ling Qian ◽  
Wei Bai ◽  
Zhihua Ma ◽  
Hao Chen ◽  
...  

Abstract A 3-Dimensional numerical wave tank based on the fully nonlinear potential flow theory has been developed in OpenFOAM, where the Laplace equation of velocity potential is discretized by Finite Volume Method. The water surface is tracked by the semi-Eulerian-Lagrangian method, where water particles on the free surface are allowed to move vertically only. The incident wave is generated by specifying velocity profiles at inlet boundary with a ramp function at the beginning of simulation to prevent initial transient disturbance. Additionally, an artificial damping zone is located at the end of wave tank to sufficiently absorb the outgoing waves before reaching downstream boundary. A five-point smoothing technique is applied at the free surface to eliminate the saw-tooth instability. The proposed wave model is validated against theoretical results and experimental data. The developed solver could be coupled with multiphase Navier-Stokes solvers in OpenFOAM in the future to establish an integrated versatile numerical wave tank for studying efficiently wave structure interaction problems.

2019 ◽  
Vol 7 (10) ◽  
pp. 375 ◽  
Author(s):  
Weizhi Wang ◽  
Arun Kamath ◽  
Csaba Pakozdi ◽  
Hans Bihs

Nonlinear wave interactions and superpositions among the different wave components and wave groups in a random sea sometimes produce rogue waves with extremely large wave heights that appear unexpectedly. A good understanding of the generation and evolution of such extreme wave events is of great importance for the analysis of wave forces on marine structures. A fully nonlinear potential flow (FNPF) model is proposed in the presented paper to investigate the different factors that influence the wave focusing location, focusing time and focusing wave height in a numerical wave tank. Those factors include wave steepness, spectrum bandwidth, wave generation method, focused wave spectrum, and wave spreading functions. The proposed model solves the Laplace equation together with the boundary conditions on a σ -coordinate grid using high-order discretisation schemes on a fully parallel computational framework. The model is validated against the focused wave experiments and thereafter used to obtain insights into the effects of the different factors. It is found that the wave steepness contributes to changing the location and time of focus significantly. Spectrum bandwidth and directional spreading affect the focusing wave height and profile, for example, a wider bandwidth and a wider directional spread lead to a lower focusing wave height. A Neumann boundary condition represents the nonlinearity of the wave groups better than a relaxation method for wave generation.


Author(s):  
Hui Sun ◽  
Odd M. Faltinsen

A two-dimensional fully nonlinear numerical wave tank is developed by using a boundary element method (BEM). The water depth can be shallow or deep. The waves are generated by simulating a piston wave maker or by specifying the input velocity at the upstream boundary. Fully nonlinear free surface conditions are satisfied in the numerical simulations. In the downstream region, a numerical beach is employed to dissipate the wave energy to avoid waves reflecting from the vertical downstream boundary. When there is a body piercing the free surface, another numerical beach is applied upstream the body to damp out only the reflected waves from the body. Two different applications are presented in this paper. The first one is to compute the pressure and velocity at any point inside the wave field. The other application is to calculate the forces on a horizontal cylinder fixed on the free surface. This second application is related to the investigation of the hydrodynamic forces on the pontoon of a fish farm. Nonlinearities are significant since the wave amplitudes can be large relative to the wavelength and the dimension of the cylinder.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Sung-Jae Kim ◽  
Weoncheol Koo

The hydrodynamic performance of a vertical cylindrical heaving buoy-type floating wave energy converter under large-amplitude wave conditions was calculated. For this study, a three-dimensional fully nonlinear potential-flow numerical wave tank (3D-FN-PNWT) was developed. The 3D-FN-PNWT was based on the boundary element method with Rankine panels. Using the mixed Eulerian–Lagrangian (MEL) method for water particle movement, nonlinear waves were produced in the PNWT. The PNWT can calculate the wave forces acting on the buoy accurately using an acceleration potential approach. The constant panels and least-square gradient reconstruction method were applied to regridding of computational boundaries. An artificial damping zone was employed to satisfy the open-sea conditions at the end free surface boundaries. The diffraction and radiation problems were solved, and their solutions were confirmed by a comparison with previous studies. The interaction of the incident wave, floating body, and power take-off (PTO) behavior was examined in the time domain using the developed 3D-FN-PNWT. From comparison, the difference between the conventional linear analysis and the nonlinear analysis in large-amplitude waves was examined.


Author(s):  
Janette B. Frandsen ◽  
Alistair G. L. Borthwick

This article describes a 2D numerical wave tank that utilises stretched mappings in order to resolve accurately the moving free surface of a liquid. It is assumed that the flow is incompressible and inviscid. Numerical solutions of the governing nonlinear potential flow equations are obtained using a finite-difference time-stepping scheme on σ-transformed grids. Free and forced sloshing motions are simulated in a rectangular tank, and the results compare well with analytical and other numerical methods. It is concluded that the present potential flow model provides a simple way of simulating steep non-breaking waves, that may be readily extended to the prediction of 3D wave motions.


2016 ◽  
Author(s):  
Hans Bihs ◽  
Mayilvahanan Alagan Chella ◽  
Arun Kamath ◽  
Øivind A. Arnsten

For the stability of offshore structures, such as offshore wind foundations, extreme wave conditions need to be taken into account. Waves from extreme events can become critical from design perspective. In a numerical wave tank, extreme waves can be generated through focussed waves. Here, linear waves are generated from a wave spectrum. The wave crests of the generated waves coincide at a pre-selected location and time. In order to test the generated waves, the time series of the free surface elevation are compared with experimental benchmark cases. The numerically simulated free surface shows good agreement with the measurements from experiments. In further computations, the wave impact of the focussed waves on a vertical circular cylinder is investigated. The focussed wave generation is implemented in the numerical wave tank module of REEF3D, which has been extensively and successfully tested for various wave hydrodynamics and wave-structure interaction problems in particular and for free surface flows in general. The open-source CFD code REEF3D solves the three-dimensional Navier-Stokes equations on a staggered Cartesian grid. Solid boundaries are taken into account with the ghost cell immersed boundary method. For the discretization of the convection terms of the momentum equations, the conservative finite difference version of the fifth-order WENO (weighted essentially non-oscillatory) scheme is used. For temporal treatment, the third-order TVD (total variation diminishing) Runge-Kutta scheme is employed. For the pressure, the projection method is used. The free surface flow is solved as two-phase fluid system. For the interface capturing, the level set method is selected. The level set function can be discretized with high-order differencing schemes. This makes it the appropriate solution for wave propagation problems based on Navier-Stokes solvers, which requires high-order numerical methods to avoid artificial wave damping. The numerical model is fully parallelized based on the domain decomposition, using MPI (message passing interface) for internode communication.


Author(s):  
Hans Bihs ◽  
Mayilvahanan Alagan Chella ◽  
Arun Kamath ◽  
Øivind Asgeir Arntsen

For the stability of offshore structures, such as offshore wind foundations, extreme wave conditions need to be taken into account. Waves from extreme events are critical from the design perspective. In a numerical wave tank, extreme waves can be modeled using focused waves. Here, linear waves are generated from a wave spectrum. The wave crests of the generated waves coincide at a preselected location and time. Focused wave generation is implemented in the numerical wave tank module of REEF3D, which has been extensively and successfully tested for various wave hydrodynamics and wave–structure interaction problems in particular and for free surface flows in general. The open-source computational fluid dynamics (CFD) code REEF3D solves the three-dimensional Navier–Stokes equations on a staggered Cartesian grid. Higher order numerical schemes are used for time and spatial discretization. For the interface capturing, the level set method is selected. In order to test the generated waves, the time series of the free surface elevation are compared with experimental benchmark cases. The numerically simulated free surface elevation shows good agreement with experimental data. In further computations, the impact of the focused waves on a vertical circular cylinder is investigated. A breaking focused wave is simulated and the associated kinematics is investigated. Free surface flow features during the interaction of nonbreaking focused waves with a cylinder and during the breaking process of a focused wave are also investigated along with the numerically captured free surface.


Author(s):  
Hans Bihs ◽  
Weizhi Wang ◽  
Csaba Pakozdi ◽  
Arun Kamath

Abstract In situations where the calculation of ocean wave propagation and impact on structures are required, fast numerical solvers are desired in order to find relevant wave events. Computational fluid dynamics (CFD)-based numerical wave tanks (NWTs) emphasize on the hydrodynamic details such as fluid–structure interaction, which make them less ideal for the event identification due to the large computational resources involved. Therefore, a computationally efficient numerical wave model is needed to identify the events both for offshore deep-water wave fields and coastal wave fields where the bathymetry and coastline variations have strong impact on wave propagation. In the current paper, a new numerical wave model is represented that solves the Laplace equation for the flow potential and the nonlinear kinematic and dynamics free surface boundary conditions. This approach requires reduced computational resources compared to CFD-based NWTs. The resulting fully nonlinear potential flow solver REEF3D::FNPF uses a σ-coordinate grid for the computations. This allows the grid to follow the irregular bottom variation with great flexibility. The free surface boundary conditions are discretized using fifth-order weighted essentially non-oscillatory (WENO) finite difference methods and the third-order total variation diminishing (TVD) Runge–Kutta scheme for time stepping. The Laplace equation for the potential is solved with Hypre’s stabilized bi-conjugated gradient solver preconditioned with geometric multi-grid. REEF3D::FNPF is fully parallelized following the domain decomposition strategy and the message passing interface (MPI) communication protocol. The numerical results agree well with the experimental measurements in all tested cases and the model proves to be efficient and accurate for both offshore and coastal conditions.


Sign in / Sign up

Export Citation Format

Share Document