Frost hardening and photosynthetic performance of Scots pine ( Pinus sylvestris L.) needles. I. Seasonal changes in the photosynthetic apparatus and its function

Planta ◽  
1998 ◽  
Vol 204 (2) ◽  
pp. 193-200 ◽  
Author(s):  
G. Vogg ◽  
R. Heim ◽  
J. Hansen ◽  
C. Schäfer ◽  
E. Beck
1986 ◽  
Vol 64 (4) ◽  
pp. 748-753 ◽  
Author(s):  
Gunnar Öquist ◽  
Martin Strand

Seedlings of Scots pine (Pinus sylvestris L.), with only primary needles, were frost hardened under a photoperiod of 8 h and a temperature of 4 °C for 6–9 weeks. The effects of frost hardening were studied on (i) the photosynthetic efficiency as defined by the quantum yield of CO2 uptake under light-limiting conditions, (ii) the energy partitioning between the two photosystems as analyzed by 77 K fluorescence spectroscopy, and (iii) the distribution of solubilized chlorophyll–protein complexes after electrophoretic separation. It was found that frost hardening had no significant effects either on the photosynthetic quantum yield measured at 23–25 °C or on the energy distribution between the two photosystems. Despite these findings, frost hardening affected the chlorophyll organization so that the proportion of aggregated complexes such as chlorophyll–protein 1a and the dimeric form of light-harvesting chlorophyll–protein decreased. Frost hardening also decreased the amount of chlorophyll–protein a and increased the amount of free, solubilized chlorophyll in the gel scan profile. From these results it is concluded that frost hardening affects the chemical interactions within the antennae organization of the photosynthetic apparatus but that these changes have no significant effects on the energy distribution between the two photosystems or on the photosynthetic efficiency as defined by the quantum yield for CO2 uptake.


1998 ◽  
Vol 28 (6) ◽  
pp. 946-950 ◽  
Author(s):  
Marja-Liisa Sutinen ◽  
Aulis Ritari ◽  
Teuvo Holappa ◽  
Kauko Kujala

The seasonal changes in soil temperature and in the frost hardiness of adult Scots pine (Pinus sylvestris L.) trees was studied between September 1991 and February 1993 in a pine forest located in Finnish Lapland. Air and soil (humus layer and 5 cm depth of mineral soil) temperatures were measured continuously every second hour. The frost hardiness of the roots in the humus layer and in the mineral soil (down to 10 cm) was measured by means of the electrolyte-leakage method. The temperature in the humus layer varied between 21.2°C and –3.2°C and in the mineral soil between 21.6°C and –2.4°C. The temperature in the humus layer was continuously slightly colder than in the mineral soil from late August until May. The frost hardiness of the pine roots was lowest (about –5°C) in May and during the first week of September. Frost hardiness stayed at its maximum of about –20°C during November and December and slightly decreased in January and February. During most of the sampling time, the frost hardiness of the roots in the humus layer was greater than in the mineral soil. There was a clear relationship between the soil temperature and the frost hardiness of roots.


Sign in / Sign up

Export Citation Format

Share Document