mineral soil
Recently Published Documents


TOTAL DOCUMENTS

1224
(FIVE YEARS 257)

H-INDEX

63
(FIVE YEARS 5)

Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 79
Author(s):  
Nor Suhaila Yaacob ◽  
Mohd Fadzli Ahmad ◽  
Ashvini Sivam ◽  
Emi Fazlina Hashim ◽  
Maegala Nallapan Maniyam ◽  
...  

Microalgae are widely utilized in commercial industries. The addition of a modified artificial medium (soil extract) could enhance their growth. Soil extract collected from the Raja Musa peat swamp and mineral soil from the Ayer Hitam Forest Reserve (AHFR), Selangor, Malaysia, were treated using various extraction methods. Carteria radiosa PHG2-A01, Neochloris conjuncta, and Nephrochlamys subsolitaria were grown in microplates at 25 °C, light intensity 33.75 µmol photons m−2s−1 for 9 days. N. conjuncta dominated the growth in 121 °C twice extraction method AFHR samples, with 47.17% increment. The highest concentrations of ammonia and nitrate were detected in the medium with soil extract treated with 121 °C twice extraction method, yielding the concentrations of 2 mg NL−1 and 35 mg NL−1 for ammonia and nitrate of RM soil and 2 mg NL−1 and 2.85 mg NL−1 for the AH soil. These extracts are proved successful as a microalgal growth stimulant, increasing revenue and the need for enriched medium. The high rate of nutrient recovery has the potential to serve as a growth promoter for microalgae.


2022 ◽  
Vol 951 (1) ◽  
pp. 012071
Author(s):  
Subhan ◽  
A Anhar ◽  
A M Muslih ◽  
U H Ar-Rasyid ◽  
S Maimunah ◽  
...  

Abstract Urban forest at Nagan Raya Regency is located in the central government and becomes a green open space that provides many benefits both directly and indirectly for the entire community in the region. Nagan Raya urban forest has various types of trees that usually found in low land mineral soil, such as Vitex pubescens locally known as Mane and Artocarpus blumei locally known as Tarap. Besides, the urban forest of nagan raya has become the habitat of several species of primates, reptiles and birds. In order to calculate the carbon stock of Nagan Raya urban forest, we use the “carbon calculator” tool developed by Michigan State University. By using nested plot of 5 m x 5 m for pile (small tree) category; 10 m x 10 m plot for pole (medium tree) category and 20 m x 20 m plot for tree category. With 12 total plots that are systematically spread throughout Nagan Raya urban forest. Averagely, carbon stock at Nagan Raya urban forest is 353,72 tCha-1. Naturally, trees in the climax condition tend to have less increment and will rotten. We suggest that maintenance and replanting of Nagan Raya urban forest is necessary to replace plants that have entered the category of “old” or low increment with made regeneration types to optimize the function of Nagan Raya urban forest as one of the buffer systems for the urban community.


Forests ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 36
Author(s):  
Jason G. Vogel ◽  
Rosvel Bracho ◽  
Madison Akers ◽  
Ralph Amateis ◽  
Allan Bacon ◽  
...  

Tree plantations represent an important component of the global carbon (C) cycle and are expected to increase in prevalence during the 21st century. We examined how silvicultural approaches that optimize economic returns in loblolly pine (Pinus taeda L.) plantations affected the accumulation of C in pools of vegetation, detritus, and mineral soil up to 100 cm across the loblolly pine’s natural range in the southeastern United States. Comparisons of silvicultural treatments included competing vegetation or ‘weed’ control, fertilization, thinning, and varying intensities of silvicultural treatment for 106 experimental plantations and 322 plots. The average age of the sampled plantations was 17 years, and the C stored in vegetation (pine and understory) averaged 82.1 ± 3.0 (±std. error) Mg C ha−1, and 14.3 ± 0.6 Mg C ha−1 in detrital pools (soil organic layers, coarse-woody debris, and soil detritus). Mineral soil C (0–100 cm) averaged 79.8 ± 4.6 Mg C ha−1 across sites. For management effects, thinning reduced vegetation by 35.5 ± 1.2 Mg C ha−1 for all treatment combinations. Weed control and fertilization increased vegetation between 2.3 and 5.7 Mg C ha−1 across treatment combinations, with high intensity silvicultural applications producing greater vegetation C than low intensity (increase of 21.4 ± 1.7 Mg C ha−1). Detrital C pools were negatively affected by thinning where either fertilization or weed control were also applied, and were increased with management intensity. Mineral soil C did not respond to any silvicultural treatments. From these data, we constructed regression models that summarized the C accumulation in detritus and detritus + vegetation in response to independent variables commonly monitored by plantation managers (site index (SI), trees per hectare (TPH) and plantation age (AGE)). The C stored in detritus and vegetation increased on average with AGE and both models included SI and TPH. The detritus model explained less variance (adj. R2 = 0.29) than the detritus + vegetation model (adj. R2 = 0.87). A general recommendation for managers looking to maximize C storage would be to maintain a high TPH and increase SI, with SI manipulation having a greater relative effect. From the model, we predict that a plantation managed to achieve the average upper third SI (26.8) within our observations, and planted at 1500 TPH, could accumulate ~85 Mg C ha−1 by 12 years of age in detritus and vegetation, an amount greater than the region’s average mineral soil C pool. Notably, SI can be increased using both genetic and silviculture technologies.


2021 ◽  
Author(s):  
Eileen Kröber ◽  
Saranya Kanukollu ◽  
Sonja Wende ◽  
Francoise Bringel ◽  
Steffen Kolb

Abstract Background: Chloromethane (CH3 Cl) is the most abundant halogenated organic compound in the atmosphere and substantially responsible for the destruction of the stratospheric ozone layer. Since anthropogenic CH 3 Cl sources have become negligible with the application of the Montreal Protocol (1987), natural sources, such as vegetation and soils, have increased proportionally in the global budget. CH3 Cl-degrading methylotrophs occurring in soils might be an important and overlooked sink.Results & Conclusions: The objective of our study was to link the biotic CH3 Cl sink with the identity of active microorganisms and their biochemical pathways for CH3 Cl degradation in a deciduous forest soil. When tested in laboratory microcosms, biological CH3 Cl consumption occurred in leaf litter, senescent leaves, and organic and mineral soil horizons. Highest consumption rates, around 2 mmol CH3 Cl g -1 dry weight h -1 , were measured in organic soil and senescent leaves, suggesting that top soil layers are active (micro-)biological CH 3 Cl degradation compartments of forest ecosystems. The DNA of these [13C]-CH3 Cl-degrading microbial communities was labelled using stable isotope probing (SIP), and the corresponding taxa and their metabolic pathways studied using high-throughput metagenomics sequencing analysis. [ 13C]-labelled Metagenome-Assembled Genome closely related to the family Beijerinckiaceae may represent a new methylotroph family of Alphaproteobacteria, which is found in metagenome databases of forest soils samples worldwide. Gene markers of the only known pathway for aerobic CH3 Cl degradation, via the methyltransferase system encoded by the CH3 Cl utilisation genes (cmu), were undetected in the DNA-SIP metagenome data, suggesting that biological CH3 Cl sink in this deciduous forest soil operates by a cmu-independent metabolism.


2021 ◽  
Author(s):  
Marie Spohn ◽  
Johan Stendahl

Abstract. While the carbon (C) content of temperate and boreal forest soils is relatively well studied, much less is known about the ratios of C, nitrogen (N), and phosphorus (P) of the soil organic matter, and the abiotic and biotic factors that shape them. Therefore, the aim of this study was to explore carbon, nitrogen, and organic phosphorus (OP) contents and element ratios in temperate and boreal forest soils and their relationships with climate, dominant tree species, and soil texture. For this purpose, we studied 309 forest soils with a stand age >60 years located all over Sweden between 56° N and 68° N. The soils are a representative subsample of Swedish forest soils with a stand age >60 years that were sampled for the Swedish Forest Soil Inventory. We found that the N stock of the organic layer increased by a factor of 7.5 from −2 °C to 7.5 °C mean annual temperature (MAT), it increased almost twice as much as the organic layer stock along the MAT gradient. The increase in the N stock went along with an increase in the N : P ratio of the organic layer by a factor of 2.1 from −2 °C to 7.5 °C MAT (R2 = 0.36, p < 0.001). Forests dominated by pine had higher C : N ratios in the litter layer and mineral soil down to a depth of 65 cm than forests dominated by other tree species. Further, also the C : P ratio was increased in the pine-dominated forests compared to forests dominated by other tree species in the organic layer, but the C : OP ratio in the mineral soil was not elevated in pine forests. C, N and OP contents in the mineral soil were higher in fine-textured soils than in coarse-textured soils by a factor of 2.3, 3.5, and 4.6, respectively. Thus, the effect of texture was stronger on OP than on N and C, likely because OP adsorbs very rigidly to mineral surfaces. Further, we found, that the P and K concentrations of the organic layer were inversely related with the organic layer stock. The C and N concentrations of the mineral soil were best predicted by the combination of MAT, texture, and tree species, whereas the OP concentration was best predicted by the combination of MAT, texture and the P concentration of the parent material in the mineral soil. In the organic layer, the P concentration was best predicted by the organic layer stock. Taken together, the results show that the N : P ratio of the organic layer was most strongly related to MAT. Further, the C : N ratio was most strongly related to dominant tree species, even in the mineral subsoil. In contrast, the C : P ratio was only affected by dominant tree species in the organic layer, but the C : OP ratio in the mineral soil was hardly affected by tree species due to the strong effect of soil texture on the OP concentration.


2021 ◽  
Vol 25 (12) ◽  
pp. 6407-6420
Author(s):  
Chang-Hwan Park ◽  
Aaron Berg ◽  
Michael H. Cosh ◽  
Andreas Colliander ◽  
Andreas Behrendt ◽  
...  

Abstract. The prevalent soil moisture probe algorithms are based on a polynomial function that does not account for the variability in soil organic matter. Users are expected to choose a model before application: either a model for mineral soil or a model for organic soil. Both approaches inevitably suffer from limitations with respect to estimating the volumetric soil water content in soils with a wide range of organic matter content. In this study, we propose a new algorithm based on the idea that the amount of soil organic matter (SOM) is related to major uncertainties in the in situ soil moisture data obtained using soil probe instruments. To test this theory, we derived a multiphase inversion algorithm from a physically based dielectric mixing model capable of using the SOM amount, performed a selection process from the multiphase model outcomes, and tested whether this new approach improves the accuracy of soil moisture (SM) data probes. The validation of the proposed new soil probe algorithm was performed using both gravimetric and dielectric data from the Soil Moisture Active Passive Validation Experiment in 2012 (SMAPVEX12). The new algorithm is more accurate than the previous soil-probe algorithm, resulting in a slightly improved correlation (0.824 to 0.848), 12 % lower root mean square error (RMSE; 0.0824 to 0.0727 cm3 cm−3), and 95 % less bias (−0.0042 to 0.0001 cm3 cm−3). These results suggest that applying the new dielectric mixing model together with global SOM estimates will result in more reliable soil moisture reference data for weather and climate models and satellite validation.


2021 ◽  
Author(s):  
Guna Petaja ◽  
◽  
Ilze Karklina ◽  
Santa Neimane

Fertilization is a method to enhance tree growth and timber production. Ammonium nitrate and wood ash are commonly used fertilizers, which can be applied at the same time to increase levels of both nitrogen and other macro- and micronutrients. We studied how ammonium nitrate and wood ash fertilization affects photosynthetic activity and transpiration at leaf level in a deciduous tree plantation in former agricultural land with mineral soil, located in the central part of Latvia (Keipene parish). Additionally, we performed foliar and soil nutrient analyses. Our results support the notion that nitrogen fertilization may not result in increased photosynthetic activity. It is possible that the photosynthetic activity has increased at canopy scale along with increasing leaf area, not at leaf scale. Wood ash addition seems to have resulted in higher photosynthetic activity for hybrid alder, although it could not be explained with phosphorus availability. Although closely related to photosynthesis, in most cases transpiration was not positively affected by fertilization. Environmental factors, such as humidity, temperature and wind speed may have a greater effect on this process.


2021 ◽  
Author(s):  
Ilze Karklina ◽  
◽  
Andis Lazdins ◽  
Jelena Stola ◽  
Aldis Butlers ◽  
...  

Forest mineral soil is one of the terrestrial carbon pools, and changes in forest management practices can affect the carbon stock in forest soil. The purpose of the study is to estimate temporal fertilization impact on mineral soil organic carbon stock, depending on fertilizers applied, forest stand type, different dominant tree species of the stands. Coniferous and birch forest stands with mineral soil in the central and eastern part of Latvia were selected for the experiment. The fertilizers used were wood ash and nitrogen containing mineral fertilizer. No significant differences in organic carbon stock in O horizon were detected 2–5 years after fertilization. A tendency of smaller organic carbon stock in upper mineral soil layers (0–10 cm, 10–20 cm) was found in most part of objects. Significantly smaller organic carbon stock was found in upper mineral soil layers (0–10 cm and 10–20 cm) in birch stands with wet mineral soil treated with ammonium nitrate if compared to the control plots, possibly due to a different soil moisture regime of forest stands. The positive and significant correlations between soil organic carbon and nitrogen stocks were found in most part of the objects.


2021 ◽  
Vol 501 ◽  
pp. 119672
Author(s):  
Boris Ťupek ◽  
Aleksi Lehtonen ◽  
Raisa Mäkipää ◽  
Pirjo Peltonen-Sainio ◽  
Saija Huuskonen ◽  
...  

2021 ◽  
Author(s):  
Martin Škerlep ◽  
Susan Nehzati ◽  
Ulf Johansson ◽  
Dan B. Kleja ◽  
Per Persson ◽  
...  

AbstractIncreasing exports of Fe and DOC from soils, causing browning of freshwaters, have been reported in recent decades in many regions of the northern hemisphere. Afforestation, and in particular an increase of Norway spruce forest in certain regions, is suggested as a driver behind these trends in water chemistry. In this study, we tested the hypothesis that the gradual accumulation of organic soil layers in spruce forests, and subsequent increase in organic acid concentrations and acidity enhances mobilization of Fe. First generation Norway spruce stands of different ages (35, 61, 90 years) and adjacent arable control plots were selected to represent the effects of aging forest. Soil solutions were sampled from suction lysimeters at two depths (below organic soil layer and in mineral soil) during two years, and analyzed for Fe concentration, Fe speciation (XAS analysis), DOC, metals, major anions and cations. Solution Fe concentrations were significantly higher in shallow soils under older spruce stands (by 5- and 6-fold) than in control plots and the youngest forest. Variation in Fe concentration was best explained by variation in DOC concentration and pH. Moreover, Fe in all soil solutions was present as mononuclear Fe(III)-OM complexes, showing that this phase is dominating Fe translocation. Fe speciation in the soil was also analyzed, and found to be dominated by Fe oxides with minor differences between plots. These results confirmed that Fe mobilization, by Fe(III)-OM complexes, was higher from mature spruce stands, which supports that afforestation with spruce may contribute to rising concentrations of Fe in surface waters.


Sign in / Sign up

Export Citation Format

Share Document