Cytoarchitecture of the medial geniculate body and thalamic projections to the auditory cortex in the rufous horseshoe bat (Rhinolophus rouxi)

2004 ◽  
Vol 209 (1) ◽  
pp. 59-76 ◽  
Author(s):  
Susanne Radtke-Schuller
2000 ◽  
Vol 32-33 ◽  
pp. 833-841 ◽  
Author(s):  
Satoru Inoue ◽  
Manabu Kimyou ◽  
Yoshiki Kashimori ◽  
Osamu Hoshino ◽  
Takeshi Kambara

2013 ◽  
Vol 76 (4) ◽  
pp. 207-212 ◽  
Author(s):  
Masao Horie ◽  
Hiroaki Tsukano ◽  
Ryuichi Hishida ◽  
Hirohide Takebayashi ◽  
Katsuei Shibuki

2007 ◽  
Vol 97 (2) ◽  
pp. 1413-1427 ◽  
Author(s):  
Hubert H. Lim ◽  
David J. Anderson

The inferior colliculus (IC) is highly modulated by descending projections from higher auditory and nonauditory centers. Traditionally, corticofugal fibers were believed to project mainly to the extralemniscal IC regions. However, there is some anatomical evidence suggesting that a substantial number of fibers from the primary auditory cortex (A1) project into the IC central nucleus (ICC) and appear to be tonotopically organized. In this study, we used antidromic stimulation combined with other electrophysiological techniques to further investigate the spatial organization of descending fibers from A1 to the ICC in ketamine-anesthetized guinea pigs. Based on our findings, corticofugal fibers originate predominantly from layer V of A1, are amply scattered throughout the ICC and only project to ICC neurons with a similar best frequency (BF). This strict tonotopic pattern suggests that these corticofugal projections are involved with modulating spectral features of sound. Along the isofrequency dimension of the ICC, there appears to be some differences in projection patterns that depend on BF region and possibly isofrequency location within A1 and may be indicative of different descending coding strategies. Furthermore, the success of the antidromic stimulation method in our study demonstrates that it can be used to investigate some of the functional properties associated with corticofugal projections to the ICC as well as to other regions (e.g., medial geniculate body, cochlear nucleus). Such a method can address some of the limitations with current anatomical techniques for studying the auditory corticofugal system.


Sign in / Sign up

Export Citation Format

Share Document