Chemogenetic inhibition of prefrontal projection neurons constrains top–down control of attention in young but not aged rats

Author(s):  
Michael R. Duggan ◽  
Surbhi Joshi ◽  
Jacob Strupp ◽  
Vinay Parikh
2020 ◽  
Author(s):  
Elizabeth Hanson ◽  
Katie L Brandel-Ankrapp ◽  
Benjamin R Arenkiel

AbstractSensory perception underlies how we internalize and interact with the external world. In order to adapt to changing circumstances and interpret signals in a variety of contexts, sensation needs to be reliable, but perception of sensory input needs to be flexible. An important mediator of this flexibility is top-down regulation from the cholinergic basal forebrain. Basal forebrain projection neurons serve as pacemakers and gatekeepers for downstream neural networks, modulating circuit activity across diverse neuronal populations. This top-down control is necessary for sensory cue detection, learning, and memory, and is disproportionately disrupted in neurodegenerative diseases associated with cognitive decline. Intriguingly, cholinergic signaling acts locally within the basal forebrain to sculpt the activity of basal forebrain output neurons. To determine how local cholinergic signaling impacts basal forebrain output pathways that participate in top-down regulation, we sought to define the dynamics of cholinergic signaling within the basal forebrain during motivated behavior and learning. Towards this, we utilized fiber photometry and the genetically encoded acetylcholine indicator GAChR2.0 to define temporal patterns of cholinergic signaling in the basal forebrain during olfactory-guided, motivated behaviors and learning. We show that cholinergic signaling reliably increased during reward-seeking behaviors but was strongly suppressed by reward delivery in a go/no-go, olfactory-cued discrimination task. The observed transient reduction in cholinergic tone was mirrored by a suppression in basal forebrain GABAergic neuronal activity. Together, these findings suggest that cholinergic tone in the basal forebrain changes rapidly to reflect rewardseeking behavior and positive reinforcement to impact basal forebrain circuit activity.


2021 ◽  
Vol 15 ◽  
Author(s):  
Elizabeth Hanson ◽  
Katie L. Brandel-Ankrapp ◽  
Benjamin R. Arenkiel

Sensory perception underlies how we internalize and interact with the external world. In order to adapt to changing circumstances and interpret signals in a variety of contexts, sensation needs to be reliable, but perception of sensory input needs to be flexible. An important mediator of this flexibility is top-down regulation from the cholinergic basal forebrain. Basal forebrain projection neurons serve as pacemakers and gatekeepers for downstream neural networks, modulating circuit activity across diverse neuronal populations. This top-down control is necessary for sensory cue detection, learning, and memory, and is disproportionately disrupted in neurodegenerative diseases associated with cognitive decline. Intriguingly, cholinergic signaling acts locally within the basal forebrain to sculpt the activity of basal forebrain output neurons. To determine how local cholinergic signaling impacts basal forebrain output pathways that participate in top-down regulation, we sought to define the dynamics of cholinergic signaling within the basal forebrain during motivated behavior and learning. Toward this, we utilized fiber photometry and the genetically encoded acetylcholine indicator GAChR2.0 to define temporal patterns of cholinergic signaling in the basal forebrain during olfactory-guided, motivated behaviors and learning. We show that cholinergic signaling reliably increased during reward seeking behaviors, but was strongly suppressed by reward delivery in a go/no-go olfactory-cued discrimination task. The observed transient reduction in cholinergic tone was mirrored by a suppression in basal forebrain GABAergic neuronal activity. Together, these findings suggest that cholinergic tone in the basal forebrain changes rapidly to reflect reward-seeking behavior and positive reinforcement and may impact downstream circuitry that modulates olfaction.


2021 ◽  
Author(s):  
Olivier Gschwend ◽  
Tao Yang ◽  
Danielle van de Lisdonk ◽  
Xian Zhang ◽  
Radhashree Sharma ◽  
...  

The rules governing behavior often vary with behavioral contexts. As a consequence, an action rewarded in one context may be discouraged in another. Animals and humans are capable of switching between behavioral strategies under different contexts and acting adaptively according to the variable rules, a flexibility that is thought to be mediated by the prefrontal cortex (PFC)1-4. However, how the PFC orchestrates context-dependent switch of strategies remains unclear. Here we show that pathway-specific projection neurons in the medial PFC (mPFC) differentially contribute to context-instructed strategy selection. In a decision-making task in which mice have been trained to flexibly switch between a previously established rule and a newly learned rule in a context-dependent manner, the activity of mPFC neurons projecting to the dorsomedial striatum encodes the contexts, and further represents decision strategies conforming to the old and new rules. Moreover, the activity of these neuron is required for context-instructed strategy selection. In contrast, the activity of mPFC neurons projecting to the ventral midline thalamus does not discriminate between the contexts, and represents the old rule even if mice have adopted the new one; furthermore, these neurons act to prevent the strategy switch under the new rule. Our results suggest that the mPFC→striatum pathway promotes flexible strategy selection guided by contexts, whereas the mPFC→thalamus pathway favors fixed strategy selection by preserving old rules. Balanced activity between the two pathways may be critical for adaptive behaviors.


2020 ◽  
Author(s):  
Bruno Oliveira Ferreira de Souza ◽  
Éve‐Marie Frigon ◽  
Robert Tremblay‐Laliberté ◽  
Christian Casanova ◽  
Denis Boire

2010 ◽  
Vol 34 (8) ◽  
pp. S29-S29
Author(s):  
Ru Zhang ◽  
Yong Zhen Gong ◽  
Wen Juan Xu ◽  
Yao Pan ◽  
Yan Xiong

Sign in / Sign up

Export Citation Format

Share Document